Calculation of the Jahn-Teller parameters with DFT - Authors Review
Main Article Content
Abstract
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
H. A. Jahn, E. Teller, Proc. R. Soc., A 161 (1937) 220 (https://dx.doi.org/10.1098/rspa.1937.0142)
O. Kahn, Structure électronique des éléments de transition: ions et molécules complexes, Presses universitaires de France, 1977
J. G. Bednorz, K. A. Müler, Perovskite-Type Oxides – The New Approach to High-Tc Superconductivity - Nobel Lecture, in Nobel Lect. Phys. 1981–1990, G. Ekspang, Ed., World Scientific Publishing Co, Singapore, 1993, pp. 424–457
I. B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge, 2006 (https://dx.doi.org/10.1017/CBO9780511524769)
R. Renner, Z. Physik 92 (1934) 172 (https://dx.doi.org/10.1007/BF01350054)
U. Öpik, M. H. L. Pryce, Proc. R. Soc., A 238 (1957) 425 (https://dx.doi.org/10.1098/rspa.1957.0010)
I. B. Bersuker, Chem. Rev. 113 (2013) 1351 (https://dx.doi.org/10.1021/cr300279n)
T. Azumi, K. Matsuzaki, Photochem. Photobiol. 25 (1977) 315 (https://dx.doi.org/10.1021/cr300279n)
H. Köppel, W. Domcke, L. S. Cederbaum, Multimode Molecular Dynamics Beyond the Born–Oppenheimer Approximation, Adv. Chem. Physics, Vol. 57, in I. Prigogine, S. A. Rice, Eds., Wiley 2007, pp. 59–246 (https://dx.doi.org/10.1002/9780470142813.ch2)
A. J. Millis, P. B. Littlewood, B. I. Shraiman, Phys. Rev. Lett. 74 (1995) 5144 (https://dx.doi.org/10.1103/PhysRevLett.74.5144)
A. J. Millis, B. I. Shraiman, R. Mueller, Phys. Rev. Lett. 77 (1996) 175 (https://dx.doi.org/10.1103/PhysRevLett.77.175)
J. G. Bednorz, K. A. Müller, Z. Physik, B: Cond. Matter 64 (1986) 189 (https://dx.doi.org/10.1007/BF01303701)
R. H. Zadik, Y. Takabayashi, G. Klupp, R. H. Colman, A. Y. Ganin, A. Potočnik, P. Jeglič, D. Arčon, P. Matus, K. Kamarás, Y. Kasahara, Y. Iwasa, A. N. Fitch, Y. Ohishi, G. Garbarino, K. Kato, M. J. Rosseinsky, K. Prassides, Sci. Adv. 1 (2015) e1500059 (https://dx.doi.org/10.1126/sciadv.1500059)
M. G. Schultz, T. S. Nunner, F. von Oppen, Phys. Rev., B 77 (2008) 075323 (https://dx.doi.org/10.1103/PhysRevB.77.075323)
I. B. Bersuker, Phys. Lett. 20 (1966) 589 (https://dx.doi.org/10.1016/0031-9163(66)91127-9)
P. Garcia-Fernandez, I. B. Bersuker, Phys. Rev. Lett. 106 (2011) 246406 (https://dx.doi.org/10.1103/PhysRevLett.106.246406)
M. Atanasov, J. M. Zadrozny, J. R. Long, F. Neese, Chem. Sci. 4 (2013) 139 (https://dx.doi.org/10.1039/c2sc21394j)
M. Gruden-Pavlović, M. Perić, M. Zlatar, P. Garcia-Fernandez, Chem. Sci. 5 (2014) 1453 (https://dx.doi.org/10.1039/C3SC52984C)
M. Perić, A. García-Fuente, M. Zlatar, C. Daul, S. Stepanović, P. García-Fernández, M. Gruden-Pavlović, Chem. Eur. J. 21 (2015) 3716 (https://dx.doi.org/10.1002/chem.201405480)
W. Domcke, H. Köppel, L. S. Cederbaum, Mol. Phys. 43 (1981) 851 (https://dx.doi.org/10.1080/00268978100101721)
M. Perić, S. D. Peyerimhoff, J. Mol. Spectrosc. 212 (2002) 153 (https://dx.doi.org/10.1006/JMSP.2002.8534)
M. Perić, S. D. Peyerimhoff, J. Chem. Phys. 102 (1995) 3685 (https://dx.doi.org/10.1063/1.468599)
M. Mitić, R. Ranković, M. Milovanović, S. Jerosimić, M. Perić, Chem. Phys. 464 (2016) 55 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.11.002)
M. Perić, Mol. Phys. 105 (2007) 59 (https://dx.doi.org/10.1080/00268970601129076)
M. Perić, B. Ostojić, J. Radić-Perić, Phys. Rep. 290 (1997) 283 (https://dx.doi.org/10.1016/S0370-1573(97)00018-5)
M. Perić, S. D. Peyerimhoff, R. J. Buenker, Mol. Phys. 49 (1983) 379 (https://dx.doi.org/10.1080/00268978300101241)
I. B. Bersuker, Spontaneous Symmetry Breaking in Matter Induced by Degeneracies and Pseudodegeneracies, in Adv. Chem. Physics, Vol. 160, S. A. Rice, A. R. Dinner, Eds., Wiley, 2016, pp. 159–208 (https://dx.doi.org/10.1002/9781119165156.ch3)
P. Garcia-Fernandez, I. B. Bersuker, Int. J. Quantum Chem. 112 (2012) 3025 (https://dx.doi.org/10.1002/qua.24204)
P. García-Fernández, J. A. Aramburu, M. Moreno, M. Zlatar, M. Gruden-Pavlovic, J. Chem. Theory Comput. (2014) 1824 (https://dx.doi.org/10.1021/ct4011097)
Y. Liu, I. B. Bersuker, P. Garcia-Fernandez, J. E. Boggs, J. Phys. Chem., A 116 (2012) 7564 (https://dx.doi.org/10.1021/jp3032836)
P. Garcia-Fernandez, J. A. Aramburu, M. Moreno, Phys. Rev., B 83 (2011) 174406 (https://dx.doi.org/10.1103/PhysRevB.83.174406)
R. F. W. Bader, Mol. Phys. 3 (1960) 137 (https://dx.doi.org/10.1103/10.1080/00268976000100161)
R. F. W. Bader, Can. J. Chem. 40 (1962) 1164 (https://dx.doi.org/10.1139/v62-178)
R. F. W. Bader, A. D. Bandrauk, J. Chem. Phys. 49 (1968) 1666 (https://dx.doi.org/10.1063/1.1670293)
R. G. Pearson, J. Am. Chem. Soc. 91 (1969) 4947 (https://dx.doi.org/10.1021/ja01046a001)
R. G. Pearson, Symmetry Rules for Chemical reactions, A Wiley-Interscience Publication, New York,1976 (https://dx.doi.org/10.1002/bbpc.19790830620)
M. Zlatar, C.-W. Schläpfer, C. Daul, A New Method to Describe Multimode Jahn–Teller Efect Using Density Functional Theory, in The Jahn–Teller-Effect Fundamentals and Implications for Physics and Chemistry, H. Koeppel, D. R. Yarkoni, H. Barentzen, Eds., Springer Series in Chemical Physics, Vol. 97, 2009, pp. 131 (https://dx.doi.org/10.1007/978-3-642-03432-9_6)
A. R. Ilkhani, N. N. Gorinchoy, I. B. Bersuker, Chem. Phys. 460 (2015) 106 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.07.015)
A. R. Ilkhani, W. Hermoso, I. B. Bersuker, Chem. Phys. 460 (2015) 75 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.02.017)
P. Garcia-Fernandez, I. B. Bersuker, J. A. Aramburu, M. T. Barriuso, M. Moreno, Phys. Rev., B 71 (2005) 184110 (https://dx.doi.org/10.1103/PhysRevB.71.184117)
Y. Liu, I. B. Bersuker, W. Zou, J. E. Boggs, J. Chem. Theory Comput. 5 (2009) 2679 (https://dx.doi.org/10.1021/ct9002515)
R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989 (https://global.oup.com/academic/product/density-functional-theory-of-atoms-and-molecules-9780195092769?cc=rs&lang=en&)
C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 11 (2009) 10757 (https://dx.doi.org/10.1039/b907148b)
F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://dx.doi.org/10.1016/j.ccr.2008.05.014)
J. P. Perdew, A. Ruzsinszky, Int. J. Quantum Chem. 110 (2010) 2801 (https://dx.doi.org/10.1002/qua.22829)
K. Burke, L. O. Wagner, Int. J. Quantum Chem. 113 (2013) 96 (https://dx.doi.org/10.1002/qua.24259)
A. D. Becke, J. Chem. Phys. 140 (2014) 18A301 (https://dx.doi.org/10.1063/1.4869598)
H. S. Yu, S. L. Li, D. G. Truhlar, J. Chem. Phys. 145 (2016) 130901 (https://dx.doi.org/10.1063/1.4963168)
P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864 (https://dx.doi.org/10.1103/PhysRev.136.B864)
L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 19 (2017) 32184 (https://dx.doi.org/10.1039/C7CP04913G)
I. B. I. B. Bersuker, J. Comp. Chem. 18 (1997) 260 (https://dx.doi.org/10.1002/(SICI)1096-987X(19970130)18:2<260::AID-JCC10>3.0.CO;2-M)
I. G. G. Kaplan, J. Mol. Struct. 838 (2007) 39 (https://dx.doi.org/10.1016/J.MOLSTRUC.2007.01.012)
I. B. Bersuker, J. Phys. Conf. Ser. 833 (2017) 012001 (https://dx.doi.org/10.1088/1742-6596/833/1/012001)
M. Levy, Phys. Rev., A 26 (1982) 1200 (https://dx.doi.org/10.1103/PhysRevA.26.1200)
M. Levy, Int. J. Quantum Chem. 110 (2010) 3140 (https://dx.doi.org/10.1002/qua.22895)
A. K. Theophilou, J. Phys., C: Solid State Phys. 12 (1979) 5419 (https://dx.doi.org/10.1088/0022-3719/12/24/013)
A. K. Theophilou, P. G. Papaconstantinou, Phys. Rev., A 61 (2000) 022502 (https://dx.doi.org/10.1103/PhysRevA.61.022502)
M. Filatov, J. Chem. Theory Comput. 9 (2013) 4526 (https://dx.doi.org/10.1021/ct400598b)
R. Requist, E. K. U. Gross, Phys. Rev. Lett. 117 (2016) 193001 (https://dx.doi.org/10.1103/PhysRevLett.117.193001)
R. Baer, Phys. Rev. Lett. 104 (2010) 073001 (https://dx.doi.org/10.1103/PhysRevLett.104.073001)
J. M. García-Lastra, M. T. Barriuso, J. A. Aramburu, M. Moreno, Chem. Phys. 317 (2005) 103 (https://dx.doi.org/10.1016/j.chemphys.2005.06.004)
W. L. Clinton, B. Rice, J. Chem. Phys. 30 (1959) 542 (https://dx.doi.org/10.1063/1.1729984)
H. Nakatsuji, J. Am. Chem. Soc. 96 (1974) 30 (https://dx.doi.org/10.1021/ja00808a005)
R. Bruyndonckx, C. Daul, P. T. Manoharan, E. Deiss, R. Bruyndockx, C. Daul, P. T. Manoharan, E. Deiss, Inorg. Chem. 36 (1997) 4251 (https://dx.doi.org/10.1021/ic961220+)
T. K. Kundu, R. Bruyndonckx, C. Daul, P. T. Manoharan, Inorg. Chem. 38 (1999) 3931 (https://dx.doi.org/10.1021/ic981111q)
M. Gruden-Pavlović, P. García-Fernández, L. Andjelković, C. Daul, M. Zlatar, J. Phys. Chem., A 115 (2011) 10801 (https://dx.doi.org/10.1021/jp206083j)
M. Zlatar, M. Gruden-Pavlović, C. W. Schläpfer, C. Daul, J. Mol. Struct. THEOCHEM 954 (2010) 86 (https://dx.doi.org/10.1016/j.theochem.2010.04.020)
L. Andjelković, M. Gruden-Pavlović, M. Zlatar, Chem. Phys. 460 (2015) 64 (https://dx.doi.org/10.1016/j.chemphys.2015.05.007)
M. Zlatar, M. Gruden-Pavlović, C.-W. Schläpfer, C. Daul, Chimia 64 (2010) 161 (https://dx.doi.org/10.2533/chimia.2010.161)
M. Perić, L. Andjelković, M. Zlatar, C. Daul, M. Gruden-Pavlović, Polyhedron 80 (2014) 69 (https://dx.doi.org/10.1016/j.poly.2014.02.005)
L. Andjelkovic, S. Stepanovic, F. Vlahovic, M. Zlatar, M. Gruden, L. Andjelković, S. Stepanović, F. Vlahović, M. Zlatar, M. Gruden, Phys. Chem. Chem. Phys. 18 (2016) 29122 (https://dx.doi.org/10.1039/C6CP03859J)
M. Zlatar, C.-W. Schläpfer, E. P. Fowe, C. Daul, Pure Appl. Chem. 81 (2009) 1397 (https://dx.doi.org/10.1351/PAC-CON-08-06-04)
L. Andjelković, M. Gruden-Pavlović, C. Daul, M. Zlatar, Int. J. Quantum Chem. 113 (2013) 859 (https://dx.doi.org/10.1002/qua.24245)
M. Atanasov, P. Comba, C. a Daul, A. Hauser, J. Phys. Chem., A 111 (2007) 9145 (https://dx.doi.org/10.1021/jp0731912)
M. Gruden-Pavlović, M. Zlatar, C.-W. Schläpfer, C. Daul, J. Mol. Struct. THEOCHEM 954 (2010) 80 (https://dx.doi.org/10.1016/j.theochem.2010.03.031)
M. Swart, M. Gruden, Acc. Chem. Res. 49 (2016) 2690 (https://dx.doi.org/10.1021/acs.accounts.6b00271)
H. Ramanantoanina, M. Zlatar, P. García-Fernández, C. Daul, M. Gruden-Pavlović, Phys. Chem. Chem. Phys. 15 (2013) 1252 (https://dx.doi.org/10.1039/c2cp43591h)
V. P. Khlopin, V. Z. Polinger, I. B. Bersuker, Theor. Chim. Acta 48 (1978) 87 (https://dx.doi.org/10.1007/BF02399020)
I. B. Bersuker, V. Z. Polinger, Vibronic interactions in Molecules and Crystals, Springer-
-Verlag, Berlin, 1989 (https://www.springer.com/gp/book/9783642834813)
J. H. Ammeter, L. Zoller, J. Bachmann, P. Baltzer, E. Gamp, R. Bucher, E. Deiss, Helv. Chim. Acta 64 (1981) 1063 (https://dx.doi.org/10.1002/chin.198141061)
F. A. Blankenship, R. L. Belford, J. Chem. Phys. 36 (1962) 633 (https://dx.doi.org/10.1063/1.1732585)
R. B. Johannesen, G. A. Candela, T. Tsang, J. Chem. Phys. 48 (1968) 5544 (https://doi.org/10.1063/1.1668254)
Y. Morino, H. Uehara, J. Chem. Phys. 45 (1966) 4543 (https://dx.doi.org/10.1063/1.1727535)
H. von Busch, V. Dev, H.-A. Eckel, S. Kasahara, J. Wang, W. Demtröder, P. Sebald, W. Meyer, Phys. Rev. Lett. 81 (1998) 4584 (https://dx.doi.org/10.1103/PhysRevLett.81.4584)
J. Gaus, K. Kobe, V. Bonacic-Koutecky, H. Kuehling, J. Manz, B. Reischl, S. Rutz, E. Schreiber, L. Woeste, J. Phys. Chem. 97 (1993) 12509 (https://dx.doi.org/10.1021/j100150a011)
B. E. Applegate, T. A. Miller, J. Chem. Phys. 114 (2001) 4855 (https://dx.doi.org/10.1063/1.1348275)
B. E. Applegate, T. A. Miller, J. Chem. Phys. 117 (2002) 10654 (https://dx.doi.org/10.1063/1.1520531)
V. Perebeinos, P. B. Allen, M. Pederson, Phys. Rev., A 72 (2005) 12501 (https://dx.doi.org/10.1103/PhysRevA.72.012501)
K. Tokunaga, T. Sato, K. Tanaka, J. Chem. Phys. 124 (2006) 154303 (https://dx.doi.org/10.1063/1.2184317)
I. Sioutis, V. L. Stakhursky, G. Tarczay, T. A. Miller, J. Chem. Phys. 128 (2008) 084311 (https://dx.doi.org/10.1063/1.2829471)
N. Manini, A. Dal Corso, M. Fabrizio, E. Tosatti, Philos. Mag., B 81 (2001) 793 (https://dx.doi.org/10.1080/13642810110062663)
H. Ramanantoanina, M. Gruden-Pavlovic, M. Zlatar, C. Daul, Int. J. Quantum Chem. 113 (2013) 802 (https://dx.doi.org/10.1002/qua.24080)
T. Yamabe, K. Yahara, T. Kato, K. Yoshizawa, J. Phys. Chem., A 104 (2000) 589 (https://dx.doi.org/10.1021/jp992496g)
T. Kato, K. Yoshizawa, J. Chem. Phys. 110 (1999) 249 (https://dx.doi.org/10.1063/1.478100)
R. Bucher, ESR-Untersuchungen an Jahn-Teller-Aktiven Sandwitchkomplexen, ETH Zuerich, 1977 (https://dx.doi.org/10.3929/ethz-a-000150322)
S. Stepanović, M. Zlatar, M. Swart, M. Gruden, J. Chem. Inf. Model. 59 (2019) 1806 (https://doi.org/10.1021/acs.jcim.8b00870)
J. Tóbik, E. Tosatti, J. Mol. Struct. 838 (2007) 112 (https://doi.org/10.1016/J.MOLSTRUC.2006.12.051)
M. Zlatar, M. Gruden-Pavlovic, M. Guell, M. Swart, M. Gruden-Pavlović, M. Güell, M. Swart, Phys. Chem. Chem. Phys. 15 (2013) 6631 (https://dx.doi.org/10.1039/C2CP43735J)
P. Chaudhuri, K. Oder, K. Wieghardt, J. Weiss, J. Reedijk, W. Hinrichs, J. Wood, A. Ozarowski, H. Stratemaier, D. Reinen, Inorg. Chem. 25 (1986) 2951 (https://dx.doi.org/10.1021/ic00237a007)
K. Wieghardt, W. Walz, B. Nuber, J. Weiss, A. Ozarowski, H. Stratemeier, D. Reinen, Inorg. Chem. 25 (1986) 1650 (https://dx.doi.org/10.1021/ic00230a025)
E. Gamp, ESR-Untersuchungen uber den Jahn-Teller-Effekt in oktaedrischen Kupfer(II)- Komplexen mit trigonalen dreizahnigen Liganden, ETH, Zurich, 1980 (https://dx.doi.org/10.3929/ethz-a-000215808)
A. D. Liehr, Z. Phys. Chem. 9 (1956) 338 (https://dx.doi.org/10.1524/zpch.1956.9.5_6.338)
L. C. Snyder, J. Chem. Phys. 33 (1960) 619 (https://dx.doi.org/10.1063/1.1731211)
W. D. Hobey, A. D. McLachlan, J. Chem. Phys. 33 (1960) 1703 (https://dx.doi.org/10.1063/1.1731485)
R. Meyer, F. Graf, T. Ha, H. H. Gunthard, Chem. Phys. Lett. 66 (1979) 65 (https://dx.doi.org/10.1016/0009-2614(79)80370-X)
W. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 101 (1979) 3771 (https://dx.doi.org/10.1021/ja00508a012)
C. Cunha, S. Canuto, J. Molec. Struct THEOCHEM 464 (1999) 73 (https://dx.doi.org/10.1016/S0166-1280(98)00536-3)
M. J. Bearpark, M. A. Robb, N. Yamamoto, Spectrochim. Acta, A 55 (1999) 639 (https://dx.doi.org/10.1016/S1386-1425(98)00267-4)
J. H. Kiefer, R. S. Tranter, H. Wang, A. F. Wagner, Int. J. Chem. Kin. 33 (2001) 834 (https://dx.doi.org/10.1002/kin.10006)
S. Zilberg, Y. Haas, J. Am. Chem. Soc. 124 (2002) 10683 (https://dx.doi.org/10.1021/ja026304y)
T. Ichino, S. W. Wren, K. M. Vogelhuber, A. J. Gianola, W. C. Lineberger, J. F. Stanton, J. Chem. Phys. 129 (2008) 084310 (https://dx.doi.org/10.1063/1.2973631)
D. Leicht, M. Kaufmann, G. Schwaab, M. Havenith, J. Chem. Phys. 145 (2016) 074304 (https://dx.doi.org/10.1063/1.4960781)
A. D. Liehr, J. Phys. Chem. 67 (1963) 389 (https://dx.doi.org/10.1021/j100796a043)
N. Iwahara, T. Sato, K. Tanaka, L. F. Chibotaru, Phys. Rev., B 82 (2010) 245409 (https://dx.doi.org/10.1103/PhysRevB.82.245409)
J. H. Ammeter, R. Bucher, N. Oswald, J. Am. Chem. Soc. 96 (1974) 7833 (https://dx.doi.org/10.1021/ja00832a049)
I. Utke, A. Gölzhäuser, Angew. Chem. Int. Ed. 49 (2010) 9328 (https://dx.doi.org/10.1002/anie.201002677)
M. Zlatar, M. Allan, J. Fedor, J. Phys. Chem., C 120 (2016) 10667 (https://dx.doi.org/10.1021/acs.jpcc.6b02660)
K. E. R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, M. Murrie, Chem. Sci. 6 (2015) 6823 (https://dx.doi.org/10.1039/C5SC02854J).