Calculation of the Jahn-Teller parameters with DFT

Matija Zlatar, Maja Gruden

Abstract


In this review, we present Density Functional Theory (DFT) procedure to calculate the Jahn-Teller (JT) parameters in a non-empirical way, which does not depend on the system at hand. Moreover, the Intrinsic Distortion Path (IDP) model that gives further insight into the mechanism of the distortion is presented. Summarized results and their comparison to the experimentally estimated values and high-level ab initio calculations, not only proves the good ability of used approach but also gives many answers on intriguing behavior of the JT active molecules.

Keywords


vibronic coupling; density functional theory; intrinsic distortion path; distortion; transition metal complexes; organic ions and radicals

Full Text:

PDF (1,569 kB)

References


H. A. Jahn, E. Teller, Proc. R. Soc. A 161 (1937) 220–235 (https://dx.doi.org/10.1098/rspa.1937.0142)

O. Kahn, Structure électronique des éléments de transition: ions et molécules complexes, Presses universitaires de France, 1977

J. G. Bednorz, K. A. Müler, Perovskite-Type Oxides – The New Approach to High-Tc Superconductivity - Nobel Lecture, in G. Ekspang (Ed.), Nobel Lect. Phys. 1981–1990, World Scientific Publishing Co, Singapore, 1993, pp. 424–457

I. B. Bersuker, The Jahn-Teller Effect, Cambridge University Press, 2006 (https://dx.doi.org/10.1017/CBO9780511524769)

R. Renner, Z. Physik 92 (1934) 172–193 (https://dx.doi.org/10.1007/BF01350054)

U. Öpik, M. H. L. Pryce, Proc. R. Soc. A 238 (1957) 425–447 (https://dx.doi.org/10.1098/rspa.1957.0010)

I. B. Bersuker, Chem. Rev. 113 (2013) 1351–90 (https://dx.doi.org/10.1021/cr300279n)

T. Azumi, K. Matsuzaki, Photochem. Photobiol. 25 (1977) 315–326 (https://dx.doi.org/10.1021/cr300279n)

H. Köppel, W. Domcke, L. S. Cederbaum, Multimode Molecular Dynamics Beyond the Born-Oppenheimer Approximation, in I. Prigogine, S. A. Rice (Eds.), Adv. Chem. Physics, Vol. 57, John Wiley & Sons, Ltd, 2007, pp. 59–246 (https://dx.doi.org/10.1002/9780470142813.ch2)

A. J. Millis, P. B. Littlewood, B. I. Shraiman, Phys. Rev. Lett. 74 (1995) 5144–5147 (https://dx.doi.org/10.1103/PhysRevLett.74.5144)

A. J. Millis, B. I. Shraiman, R. Mueller, Phys. Rev. Lett. 77 (1996) 175–178 (https://dx.doi.org/10.1103/PhysRevLett.77.175)

J. G. Bednorz, K. A. Müller, Z. Physik B - Condensed Matter 64 (1986) 189–193 (https://dx.doi.org/10.1007/BF01303701)

R. H. Zadik, Y. Takabayashi, G. Klupp, R. H. Colman, A. Y. Ganin, A. Potočnik, P. Jeglič, D. Arčon, P. Matus, K. Kamarás, Y. Kasahara, Y. Iwasa, A. N. Fitch, Y. Ohishi, G. Garbarino, et al., Sci. Adv. 1 (2015) e1500059 (https://dx.doi.org/10.1126/sciadv.1500059)

M. G. Schultz, T. S. Nunner, F. von Oppen, Phys. Rev. B 77 (2008) 075323 (https://dx.doi.org/10.1103/PhysRevB.77.075323)

I. B. Bersuker, Phys. Lett. 20 (1966) 589–590 (https://dx.doi.org/10.1016/0031-9163(66)91127-9)

P. Garcia-Fernandez, I. B. Bersuker, Phys. Rev. Lett. 106 (2011) 246406 (https://dx.doi.org/10.1103/PhysRevLett.106.246406)

M. Atanasov, J. M. Zadrozny, J. R. Long, F. Neese, Chem. Sci. 4 (2013) 139 (https://dx.doi.org/10.1039/c2sc21394j)

M. Gruden-Pavlović, M. Perić, M. Zlatar, P. Garcia-Fernandez, Chem. Sci. 5 (2014) 1453–1462 (https://dx.doi.org/10.1039/C3SC52984C)

M. Perić, A. García-Fuente, M. Zlatar, C. Daul, S. Stepanović, P. García-Fernández, M. Gruden-Pavlović, Chem. - A Eur. J. 21 (2015) 3716–3726 (https://dx.doi.org/10.1002/chem.201405480)

W. Domcke, H. Köppel, L. S. Cederbaum, Mol. Phys. 43 (1981) 851–875 (https://dx.doi.org/10.1080/00268978100101721)

M. Perić, S. D. Peyerimhoff, J. Mol. Spectrosc. 212 (2002) 153–161 (https://dx.doi.org/10.1006/JMSP.2002.8534)

M. Perić, S. D. Peyerimhoff, J. Chem. Phys. 102 (1995) 3685–3694 (https://dx.doi.org/10.1063/1.468599)

M. Mitić, R. Ranković, M. Milovanović, S. Jerosimić, M. Perić, Chem. Phys. 464 (2016) 55–68 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.11.002)

M. Perić, Mol. Phys. 105 (2007) 59–69 (https://dx.doi.org/10.1080/00268970601129076)

M. Perić, B. Ostojić, J. Radić-Perić, Phys. Rep. 290 (1997) 283–357 (https://dx.doi.org/10.1016/S0370-1573(97)00018-5)

M. Perić, S. D. Peyerimhoff, R. J. Buenker, Mol. Phys. 49 (1983) 379–400 (https://dx.doi.org/10.1080/00268978300101241)

I. B. Bersuker, Spontaneous Symmetry Breaking in Matter Induced by Degeneracies and Pseudodegeneracies, in S. A. Rice, A. R. Dinner (Eds.) Adv. Chem. Physics, Vol. 160, John Wiley & Sons, Ltd, 2016, pp. 159–208 (https://dx.doi.org/10.1002/9781119165156.ch3)

P. Garcia-Fernandez, I. B. Bersuker, Int. J. Quantum Chem. 112 (2012) 3025–3032 (https://dx.doi.org/10.1002/qua.24204)

P. García-Fernández, J. A. Aramburu, M. Moreno, M. Zlatar, M. Gruden-Pavlovic, J. Chem. Theory Comput. (2014) 1824–1833 (https://dx.doi.org/10.1021/ct4011097)

Y. Liu, I. B. Bersuker, P. Garcia-Fernandez, J. E. Boggs, J. Phys. Chem. A 116 (2012) 7564-7570 (https://dx.doi.org/10.1021/jp3032836)

P. Garcia-Fernandez, J. A. Aramburu, M. Moreno, Phys. Rev. B 83 (2011) 174406 (https://dx.doi.org/10.1103/PhysRevB.83.174406)

R. F. W. Bader, Mol. Phys. 3 (1960) 137–151 (https://dx.doi.org/10.1103/10.1080/00268976000100161)

R. F. W. Bader, Can. J. Chem. 40 (1962) 1164–1175 (https://dx.doi.org/10.1139/v62-178)

R. F. W. Bader, A. D. Bandrauk, J. Chem. Phys. 49 (1968) 1666–1675 (https://dx.doi.org/10.1063/1.1670293)

R. G. Pearson, J. Am. Chem. Soc. 91 (1969) 4947–4955 (https://dx.doi.org/10.1021/ja01046a001)

R. G. Pearson, Symmetry Rules for Chemical reactions, A Willey-Interscience Publication, 1976 (https://dx.doi.org/10.1002/bbpc.19790830620)

M. Zlatar, C.-W. Schläpfer, C. Daul, A New Method to Describe Multimode Jahn-Teller Efect Using Density Functional Theory, in H. Koeppel, D. R. Yarkoni, H. Barentzen (Eds.), The Jahn-Teller-Effect Fundamentals and Implications for Physics and Chemistry, Springer Series in Chemical Physics, 97, 2009, pp. 131–165 (https://dx.doi.org/10.1007/978-3-642-03432-9_6)

A. R. Ilkhani, N. N. Gorinchoy, I. B. Bersuker, Chem. Phys. 460 (2015) 106–110 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.07.015)

A. R. Ilkhani, W. Hermoso, I. B. Bersuker, Chem. Phys. 460 (2015) 75–82 (https://dx.doi.org/10.1016/J.CHEMPHYS.2015.02.017)

P. Garcia-Fernandez, I. B. Bersuker, J. A. Aramburu, M. T. Barriuso, M. Moreno, Phys. Rev. B 71 (2005) 184110–184117 (https://dx.doi.org/10.1103/PhysRevB.71.184117)

Y. Liu, I. B. Bersuker, W. Zou, J. E. Boggs, J. Chem. Theory Comput. 5 (2009) 2679–2686 (https://dx.doi.org/10.1021/ct9002515)

R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1989 (https://global.oup.com/academic/product/density-functional-theory-of-atoms-and-molecules-9780195092769?cc=rs〈=en&)

C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 11 (2009) 10757–10816 (https://dx.doi.org/10.1039/b907148b)

F. Neese, Coord. Chem. Rev. 253 (2009) 526–563 (https://dx.doi.org/10.1016/j.ccr.2008.05.014)

J. P. Perdew, A. Ruzsinszky, Int. J. Quantum Chem. 110 (2010) 2801–2807 (https://dx.doi.org/10.1002/qua.22829)

K. Burke, L. O. Wagner, Int. J. Quantum Chem. 113 (2013) 96–101 (https://dx.doi.org/10.1002/qua.24259)

A. D. Becke, J. Chem. Phys. 140 (2014) 18A301 (https://dx.doi.org/10.1063/1.4869598)

H. S. Yu, S. L. Li, D. G. Truhlar, J. Chem. Phys. 145 (2016) 130901 (https://dx.doi.org/10.1063/1.4963168)

P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864–B871 (https://dx.doi.org/10.1103/PhysRev.136.B864)

L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 19 (2017) 32184–32215 (https://dx.doi.org/10.1039/C7CP04913G)

I. B. I. B. Bersuker, J. Comp. Chem. 18 (1997) 260–267 (https://dx.doi.org/10.1002/(SICI)1096-987X(19970130)18:2<260::AID-JCC10>3.0.CO;2-M)

I. G. G. Kaplan, J. Mol. Struct. 838 (2007) 39–43 (https://dx.doi.org/10.1016/J.MOLSTRUC.2007.01.012)

I. B. Bersuker, J. Phys. Conf. Ser. 833 (2017) 012001 (https://dx.doi.org/10.1088/1742-6596/833/1/012001)

M. Levy, Phys. Rev. A 26 (1982) 1200–1208 (https://dx.doi.org/10.1103/PhysRevA.26.1200)

M. Levy, Int. J. Quantum Chem. 110 (2010) 3140–3144 (https://dx.doi.org/10.1002/qua.22895)

A. K. Theophilou, J. Phys. C Solid State Phys. 12 (1979) 5419 (https://dx.doi.org/10.1088/0022-3719/12/24/013)

A. K. Theophilou, P. G. Papaconstantinou, Phys. Rev. A 61 (2000) 022502 (https://dx.doi.org/10.1103/PhysRevA.61.022502)

M. Filatov, J. Chem. Theory Comput. 9 (2013) 4526–4541 (https://dx.doi.org/10.1021/ct400598b)

R. Requist, E. K. U. Gross, Phys. Rev. Lett. 117 (2016) 193001 (https://dx.doi.org/10.1103/PhysRevLett.117.193001)

R. Baer, Phys. Rev. Lett. 104 (2010) 073001 (https://dx.doi.org/10.1103/PhysRevLett.104.073001)

J. M. García-Lastra, M. T. Barriuso, J. A. Aramburu, M. Moreno, Chem. Phys. 317 (2005) 103–110 (https://dx.doi.org/10.1016/j.chemphys.2005.06.004)

W. L. Clinton, B. Rice, J. Chem. Phys. 30 (1959) 542–546 (https://dx.doi.org/10.1063/1.1729984)

H. Nakatsuji, J. Am. Chem. Soc. 96 (1974) 30–37 (https://dx.doi.org/10.1021/ja00808a005)

R. Bruyndonckx, C. Daul, P. T. Manoharan, E. Deiss, R. Bruyndockx, C. Daul, P. T. Manoharan, E. Deiss, Inorg. Chem. 36 (1997) 4251–4256 (https://dx.doi.org/10.1021/ic961220+)

T. K. Kundu, R. Bruyndonckx, C. Daul, P. T. Manoharan, Inorg. Chem. 38 (1999) 3931–3934 (https://dx.doi.org/10.1021/ic981111q)

M. Gruden-Pavlović, P. García-Fernández, L. Andjelković, C. Daul, M. Zlatar, J. Phys. Chem. A 115 (2011) 10801–10813 (https://dx.doi.org/10.1021/jp206083j)

M. Zlatar, M. Gruden-Pavlović, C. W. Schläpfer, C. Daul, J. Mol. Struct. THEOCHEM 954 (2010) 86–93 (https://dx.doi.org/10.1016/j.theochem.2010.04.020)

L. Andjelković, M. Gruden-Pavlović, M. Zlatar, Chem. Phys. 460 (2015) 64-74 (https://dx.doi.org/10.1016/j.chemphys.2015.05.007)

M. Zlatar, M. Gruden-Pavlović, C.-W. Schläpfer, C. Daul, Chimia 64 (2010) 161–164 (https://dx.doi.org/10.2533/chimia.2010.161)

M. Perić, L. Andjelković, M. Zlatar, C. Daul, M. Gruden-Pavlović, Polyhedron 80 (2014) 69–80 (https://dx.doi.org/10.1016/j.poly.2014.02.005)

L. Andjelkovic, S. Stepanovic, F. Vlahovic, M. Zlatar, M. Gruden, L. Andjelković, S. Stepanović, F. Vlahović, M. Zlatar, M. Gruden, Phys. Chem. Chem. Phys. 18 (2016) 29122–29130 (https://dx.doi.org/10.1039/C6CP03859J)

M. Zlatar, C.-W. Schläpfer, E. P. Fowe, C. Daul, Pure Appl. Chem. 81 (2009) 1397-1411 (https://dx.doi.org/10.1351/PAC-CON-08-06-04)

L. Andjelković, M. Gruden-Pavlović, C. Daul, M. Zlatar, Int. J. Quantum Chem. 113 (2013) 859–864 (https://dx.doi.org/10.1002/qua.24245)

M. Atanasov, P. Comba, C. a Daul, A. Hauser, J. Phys. Chem. A 111 (2007) 9145–63 (https://dx.doi.org/10.1021/jp0731912)

M. Gruden-Pavlović, M. Zlatar, C.-W. Schläpfer, C. Daul, J. Mol. Struct. THEOCHEM 954 (2010) 80–85 (https://dx.doi.org/10.1016/j.theochem.2010.03.031)

M. Swart, M. Gruden, Acc. Chem. Res. 49 (2016) 2690–2697 (https://dx.doi.org/10.1021/acs.accounts.6b00271)

H. Ramanantoanina, M. Zlatar, P. García-Fernández, C. Daul, M. Gruden-Pavlović, Phys. Chem. Chem. Phys. 15 (2013) 1252–1259 (https://dx.doi.org/10.1039/c2cp43591h)

V. P. Khlopin, V. Z. Polinger, I. B. Bersuker, Theor. Chim. Acta 48 (1978) 87–101 (https://dx.doi.org/10.1007/BF02399020)

I. B. Bersuker, V. Z. Polinger, Vibronic interactions in Molecules and Crystals, Springer-Verlag, Berlin, 1989 (https://www.springer.com/gp/book/9783642834813)

J. H. Ammeter, L. Zoller, J. Bachmann, P. Baltzer, E. Gamp, R. Bucher, E. Deiss, Helv. Chim. Acta 64 (1981) 1063–1082 (https://dx.doi.org/10.1002/chin.198141061)

F. A. Blankenship, R. L. Belford, J. Chem. Phys. 36 (1962) 633–639 (https://dx.doi.org/10.1063/1.1732585)

R. B. Johannesen, G. A. Candela, T. Tsang, J. Chem. Phys. 48 (1968) 5544–5549 (https://doi.org/10.1063/1.1668254)

Y. Morino, H. Uehara, J. Chem. Phys. 45 (1966) 4543–4550 (https://dx.doi.org/10.1063/1.1727535)

H. von Busch, V. Dev, H.-A. Eckel, S. Kasahara, J. Wang, W. Demtröder, P. Sebald, W. Meyer, Phys. Rev. Lett. 81 (1998) 4584–4587 (https://dx.doi.org/10.1103/PhysRevLett.81.4584)

J. Gaus, K. Kobe, V. Bonacic-Koutecky, H. Kuehling, J. Manz, B. Reischl, S. Rutz, E. Schreiber, L. Woeste, J. Phys. Chem. 97 (1993) 12509–12515 (https://dx.doi.org/10.1021/j100150a011)

B. E. Applegate, T. A. Miller, J. Chem. Phys. 114 (2001) 4855 (https://dx.doi.org/10.1063/1.1348275)

B. E. Applegate, T. A. Miller, J. Chem. Phys. 117 (2002) 10654 (https://dx.doi.org/10.1063/1.1520531)

V. Perebeinos, P. B. Allen, M. Pederson, Phys. Rev. A 72 (2005) 12501–12506 (https://dx.doi.org/10.1103/PhysRevA.72.012501)

K. Tokunaga, T. Sato, K. Tanaka, J. Chem. Phys. 124 (2006) 154303 (https://dx.doi.org/10.1063/1.2184317)

I. Sioutis, V. L. Stakhursky, G. Tarczay, T. A. Miller, J. Chem. Phys. 128 (2008) 084311 (https://dx.doi.org/10.1063/1.2829471)

N. Manini, A. Dal Corso, M. Fabrizio, E. Tosatti, Philos. Mag. B 81 (2001) 793–812 (https://dx.doi.org/10.1080/13642810110062663)

H. Ramanantoanina, M. Gruden-Pavlovic, M. Zlatar, C. Daul, Int. J. Quantum Chem. 113 (2013) 802–807 (https://dx.doi.org/10.1002/qua.24080)

Tokio Yamabe, Kazuyuki Yahara, and Takashi Kato, K. Yoshizawa, J. Phys. Chem. A 104 (2000) 589–595 (https://dx.doi.org/10.1021/jp992496g)

T. Kato, K. Yoshizawa, J. Chem. Phys. 110 (1999) 249–255 (https://dx.doi.org/10.1063/1.478100)

R. Bucher, ESR-Untersuchungen an Jahn-Teller-Aktiven Sandwitchkomplexen, ETH Zuerich, 1977 (https://dx.doi.org/10.3929/ethz-a-000150322)

S. Stepanović, M. Zlatar, M. Swart, M. Gruden, J. Chem. Inf. Model. (2019) (https://doi.org/10.1021/acs.jcim.8b00870)

J. Tóbik, E. Tosatti, J. Mol. Struct. 838 (2007) 112–115 (https://doi.org/10.1016/J.MOLSTRUC.2006.12.051)

M. Zlatar, M. Gruden-Pavlovic, M. Guell, M. Swart, M. Gruden-Pavlović, M. Güell, M. Swart, Phys. Chem. Chem. Phys. 15 (2013) 6631–6639 (https://dx.doi.org/10.1039/C2CP43735J)

P. Chaudhuri, K. Oder, K. Wieghardt, J. Weiss, J. Reedijk, W. Hinrichs, J. Wood, A. Ozarowski, H. Stratemaier, D. Reinen, Inorg. Chem. 25 (1986) 2951–2958 (https://dx.doi.org/10.1021/ic00237a007)

K. Wieghardt, W. Walz, B. Nuber, J. Weiss, A. Ozarowski, H. Stratemeier, D. Reinen, Inorg. Chem. 25 (1986) 1650–1654 (https://dx.doi.org/10.1021/ic00230a025)

E. Gamp, ESR-Untersuchungen uber den Jahn-Teller-Effekt in oktaedrischen Kupfer(II)- Komplexen mit trigonalen dreizahnigen Liganden, ETH Zurich, 1980 (https://dx.doi.org/10.3929/ethz-a-000215808)

A. D. Liehr, Z. Für Phys. Chemie 9 (1956) 338–354 (https://dx.doi.org/10.1524/zpch.1956.9.5_6.338)

L. C. Snyder, J. Chem. Phys. 33 (1960) 619–621 (https://dx.doi.org/10.1063/1.1731211)

W. D. Hobey, A. D. McLachlan, J. Chem. Phys. 33 (1960) 1703–1965 (https://dx.doi.org/10.1063/1.1731485)

R. Meyer, F. Graf, T. Ha, H. H. Gunthard, Chem. Phys. Lett. 66 (1979) 65–71 (https://dx.doi.org/10.1016/0009-2614(79)80370-X)

W. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 101 (1979) 3771–3775 (https://dx.doi.org/10.1021/ja00508a012)

C. Cunha, S. Canuto, J. Molec. Struct THEOCHEM 464 (1999) 73–77 (https://dx.doi.org/10.1016/S0166-1280(98)00536-3)

M. J. Bearpark, M. A. Robb, N. Yamamoto, Spectrochim. Acta A 55 (1999) 639–646 (https://dx.doi.org/10.1016/S1386-1425(98)00267-4)

J. H. Kiefer, R. S. Tranter, H. Wang, A. F. Wagner, Int. J. Chem. Kin. 33 (2001) 834–845 (https://dx.doi.org/10.1002/kin.10006)

S. Zilberg, Y. Haas, J. Am. Chem. Soc. 124 (2002) 10683–10691 (https://dx.doi.org/10.1021/ja026304y)

T. Ichino, S. W. Wren, K. M. Vogelhuber, A. J. Gianola, W. C. Lineberger, J. F. Stanton, J. Chem. Phys. 129 (2008) 084310 (https://dx.doi.org/10.1063/1.2973631)

D. Leicht, M. Kaufmann, G. Schwaab, M. Havenith, J. Chem. Phys. 145 (2016) 074304 (https://dx.doi.org/10.1063/1.4960781)

A. D. Liehr, J. Phys. Chem. 67 (1963) 389–471 (https://dx.doi.org/10.1021/j100796a043)

N. Iwahara, T. Sato, K. Tanaka, L. F. Chibotaru, Phys. Rev. B 82 (2010) 245409 (https://dx.doi.org/10.1103/PhysRevB.82.245409)

J. H. Ammeter, R. Bucher, N. Oswald, J. Am. Chem. Soc. 96 (1974) 7833–7835 (https://dx.doi.org/10.1021/ja00832a049)

I. Utke, A. Gölzhäuser, Angew. Chemie Int. Ed. 49 (2010) 9328–9330 (https://dx.doi.org/10.1002/anie.201002677)

M. Zlatar, M. Allan, J. Fedor, J. Phys. Chem. C 120 (2016) 10667–10674 (https://dx.doi.org/10.1021/acs.jpcc.6b02660)

K. E. R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, M. Murrie, Chem. Sci. 6 (2015) 6823–6828 (https://dx.doi.org/10.1039/C5SC02854J)




DOI: https://doi.org/10.2298/JSC190510064Z

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)