Waste hemp and flax fibers and cotton and cotton/polyester yarns for removal of methylene blue from wastewater: Comparative study of adsorption properties Scientific paper

Main Article Content

Marija Vukčević
https://orcid.org/0000-0003-0416-0741
Marina Maletić
https://orcid.org/0000-0002-4112-9316
Biljana Pejić
https://orcid.org/0000-0003-0694-6529
Nataša Karić
https://orcid.org/0000-0002-7521-4340
Katarina Trivunac
https://orcid.org/0000-0002-9251-744X
Aleksandra Perić Grujić
https://orcid.org/0000-0002-2593-4796

Abstract

Waste hemp and flax fibers, and cotton and cotton/polyester yarns, available in large quantities from the textile industry, were used as cheap and effective sorbents for the removal of methylene blue from wastewater. Waste fibers and yarns were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, iodine sorption, water retention, and point of zero charge, as well as through the determination of crystallinity index and degree of surface crystallinity. The adsorption of methylene blue was opti­mized by examining the influence of contact time, initial concentration, tempe­rature, and pH value. It was found that the more ordered structure of cotton and cotton/polyester yarns leads to lower adsorption capacities and better agree­ment with pseudo-second order kinetic and Langmuir isotherm model, while the more heterogeneous structure of flax and hemp fibers shows higher cap­acities for methylene blue adsorption, better described by the pseudo-first order kinetic and Freundlich isotherm model. Based on the obtained results, waste lignocellulosic fibers and yarns can be used for the discoloration of wastewater, thereby solving the problem of waste generated in the textile industry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Vukčević, M. Maletić, B. Pejić, N. Karić, K. Trivunac, and A. Perić Grujić, “Waste hemp and flax fibers and cotton and cotton/polyester yarns for removal of methylene blue from wastewater: Comparative study of adsorption properties: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 6, pp. 669–683, Jun. 2023.
Section
Environmental Chemistry

Funding data

References

A. Briga-Sá, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, A. Paiva, Constr. Build. Mater. 38 (2013) 155 (https://doi.org/10.1016/j.conbuildmat.2012.08.037)

Y. Wang, Waste Biomass Valor. 1 (2010) 135 (http://dx.doi.org/doi:10.1007/s12649-009-9005-y)

N. Pensupa, S.Y. Leu, Y. Hu, C. Du, H. Liu, H. Jing, H. Wang, C.S. Ki Lin, Top. Curr. Chem. 375 (2017) 189 (http://dx.doi.org/doi:10.1007/s41061-017-0165-0)

Yalcin-Enis, M. Kucukali-Ozturk, H. Sezgin, in Nanoscience and Biotechnology for Environmental Applications, K.M. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse, Eds., Springer Nature Switzerland AG, Cham, 2019, p. 29 (http://dx.doi.org/doi:10.1007/978-3-319-97922-9_2)

J. Rapsikevičienė, I. Gurauskienė, A. Jučienė, Environ. Res. Eng. Manage. 75 (2019) 43 (http://dx.doi.org/doi:10.5755/j01.erem.75.1.21703)

S. Rizal, K.H.P.S. Abdul, A.A. Oyekanmi, O.N. Gideon, C.K. Abdullah, E.B. Yahya, T. Alfatah, F.A. Sabaruddin, A.A. Rahman, Polymers 13 (2021) 1 (http://dx.doi.org/doi:10.3390/polym13071006)

D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, J. Solid State Chem. 269 (2018) 580 (http://dx.doi.org/doi:10.1016/j.jssc.2018.10.035)

M.D. Stanescu, Environ. Sci. Pollut. Res. 28 (2021) 14253 (http://dx.doi.org/doi:10.1007/s11356-021-12416-9)

F. Parvin, S. Islam, Z. Urmy, S. Ahmed, A.K.M. Saiful Islam, Biomed. J. Sci. Technol. Res. 28 (2020) 21831 (http://dx.doi.org/doi:10.26717/BJSTR.2020.28.004692)

S. Mor, M.K. Chhavi, K.K. Sushil, K. Ravindra, Environ. Dev. Sustain. 20 (2018) 625 (http://dx.doi.org/doi:10.1007/s10668-016-9902-8)

M.D. Tenev, A. Farías, C. Torre, G. Fontana, N. Caracciolo, S.P. Boeykens, J. Sustain. Develop. Energy, Water Environ. Systems 7 (2019) 667 (http://dx.doi.org/doi:10.13044/j.sdewes.d7.0269)

S. Khamparia, D. Kaur Jaspal, Front. Env. Sci. Eng. 11 (2017) 1 (http://dx.doi.org/doi:10.1007/s11783-017-0899-5)

S. Rangabhashiyam, N. Anu, N. Selvaraju, J. Environ. Chem. Eng. 1 (2013) 629 (http://dx.doi.org/doi:10.1016/j.jece.2013.07.014)

M. Kostic, B. Pejic, M.Vukcevic, in Chemistry of Lignocellulosics: Current Trends, T. Stevanovic, Ed., Taylor & Francis Group/CRC Press, Boca Raton, FL, 2018, p. 3 (https://www.crcpress.com/Chemistry-of-Lignocellulosics-Current-Trends/Stevanovic/p/book/9781498775694)

B.D. Lazić, B.M. Pejić, A.D. Kramar, M.M. Vukčević, K.R. Mihajlovski, J.D. Rusmirović, M.M. Kostić, Cellulose 25 (2018) 697 (https://doi.org/10.1007/s10570-017-1575-4)

Pejić, M. Vukčević, M. Kostić, in Sustainable Agriculture Reviews 42, G. Crini, E. Lichtfouse, Eds., Springer Nature Switzerland AG, Cham, 2020, p. 111 (https://doi.org/10.1007/978-3-030-41384-2_4)

J.G.G. De Farias, R.C. Cavalcante, B.R. Canabarro, H.M. Viana, S. Scholz, R.A. Simão, Carbohyd. Polym. 165 (2017) 429 (http://dx.doi.org/10.1016/j.carbpol.2017.02.042)

Dai, M. Fan, Vib. Spectrosc. 55 (2011) 300 (http://dx.doi.org/10.1016/j.vibspec.2010.12.009)

Donelli, G. Freddi, V.A. Nierstrasz, Paola Taddei, Polym. Degrad. Stabil. 95 (2010) 1542 (http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.011)

Fakin, V. Golob, K. Stana Kleinschek, A. Majcen, L. Marechal, Text. Res. J. 76 (2006) 448 (http://dx.doi.org/10.1177/0040517506062767)

M. Vukcevic, B. Pejic, M. Lausevic, I. Pajic-Lijakovic, M. Kostic, Fiber. Polym. 15 (2014) 687 (http://dx.doi.org/10.1007/s12221-014-0687-9)

N. Saha, M. Volpe, L. Fiori, R. Volpe, A. Messineo, M. Toufiq Reza, Energies 13 (2020) 4686 (http://dx.doi.org/10.3390/en13184686)

S. Lagergren, Handlingar 24 (1898) 1

Y. S. Ho, G. Mckay, Process Biochem. 34 (1999) 451 (http://dx.doi.org/10.1016/S0032-9592(98)00112-5)

W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Civil. Eng. 89 (1963) 31

C. Aharoni, M. Ungarish, J. Chem. Soc. Faraday Trans. 1 (1976) 265 (https://doi.org/10.1039/F19767200400)

Langmuir, J. Am. Chem. Soc. 40 (1918) 1361

H.M.F. Freundlich, Phys. Chem. 57 (1906) 384

Harrou, E. Gharibi, H. Nasri, M. El Ouahabi, SN Appl. Sci. 2 (2020) 277 (https://doi.org/10.1007/s42452-020-2067-y)

R.M. Kozasowski, M. Mackiewicz-Talarczyk, A.M. Allam, in Handbook of Natural Fibres Volume 1, R.M. Kozłowski, Ed., Woodhead Publishing Limited, Sawston, Cambridge, 2012, p. 56

H. Zhang, R. Ming, G. Yang, Y. Li, Q. Li, H. Shao, Polym. Eng. Sci. 55 (2015) 2553 (https://doi.org/10.1002/pen.24147)

M.A. Sawpan, K.L. Pickering, Alan Fernyhough, Compos., A 42 (2011) 888 (https://doi.org/10.1016/j.compositesa.2011.03.008)

A.A. Younis, Egypt. J. Pet. 25 (2016) 161 (http://dx.doi.org/10.1016/j.ejpe.2015.04.001)

S. Mihajlović, M. Vukčević, B. Pejić, A. Perić-Grujić, M. Ristić, K. Trivunac, J. Nat. Fibers (2021) 9860 (https://doi.org/10.1080/15440478.2021.1993414)

J.J. Salazar-Rabago, R. Leyva-Ramos, J. Rivera-Utrilla, R. Ocampo-Perez, F.J. Cerino-Cordova, Sustain. Environ. Res. 27 (2017) 32 (http://dx.doi.org/10.1016/j.serj.2016.11.009)

Salah Omer, G.A. El Naeem, A.I. Abd-Elhamid, O.O.M. Farahat, A.A. El-Bardan, He.M.A. Soliman, A.A. Nayl, J. Mater. Res. Technol. 19 (2022) 3241 (https://doi.org/10.1016/j.jmrt.2022.06.045).

Most read articles by the same author(s)