Waste hemp and flax fibers and cotton and cotton/polyester yarns for removal of methylene blue from wastewater: Comparative study of adsorption properties Scientific paper
Main Article Content
Abstract
Waste hemp and flax fibers, and cotton and cotton/polyester yarns, available in large quantities from the textile industry, were used as cheap and effective sorbents for the removal of methylene blue from wastewater. Waste fibers and yarns were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, iodine sorption, water retention, and point of zero charge, as well as through the determination of crystallinity index and degree of surface crystallinity. The adsorption of methylene blue was optimized by examining the influence of contact time, initial concentration, temperature, and pH value. It was found that the more ordered structure of cotton and cotton/polyester yarns leads to lower adsorption capacities and better agreement with pseudo-second order kinetic and Langmuir isotherm model, while the more heterogeneous structure of flax and hemp fibers shows higher capacities for methylene blue adsorption, better described by the pseudo-first order kinetic and Freundlich isotherm model. Based on the obtained results, waste lignocellulosic fibers and yarns can be used for the discoloration of wastewater, thereby solving the problem of waste generated in the textile industry.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Science Fund of the Republic of Serbia
Grant numbers 7743343
References
A. Briga-Sá, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, A. Paiva, Constr. Build. Mater. 38 (2013) 155 (https://doi.org/10.1016/j.conbuildmat.2012.08.037)
Y. Wang, Waste Biomass Valor. 1 (2010) 135 (http://dx.doi.org/doi:10.1007/s12649-009-9005-y)
N. Pensupa, S.Y. Leu, Y. Hu, C. Du, H. Liu, H. Jing, H. Wang, C.S. Ki Lin, Top. Curr. Chem. 375 (2017) 189 (http://dx.doi.org/doi:10.1007/s41061-017-0165-0)
Yalcin-Enis, M. Kucukali-Ozturk, H. Sezgin, in Nanoscience and Biotechnology for Environmental Applications, K.M. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse, Eds., Springer Nature Switzerland AG, Cham, 2019, p. 29 (http://dx.doi.org/doi:10.1007/978-3-319-97922-9_2)
J. Rapsikevičienė, I. Gurauskienė, A. Jučienė, Environ. Res. Eng. Manage. 75 (2019) 43 (http://dx.doi.org/doi:10.5755/j01.erem.75.1.21703)
S. Rizal, K.H.P.S. Abdul, A.A. Oyekanmi, O.N. Gideon, C.K. Abdullah, E.B. Yahya, T. Alfatah, F.A. Sabaruddin, A.A. Rahman, Polymers 13 (2021) 1 (http://dx.doi.org/doi:10.3390/polym13071006)
D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, J. Solid State Chem. 269 (2018) 580 (http://dx.doi.org/doi:10.1016/j.jssc.2018.10.035)
M.D. Stanescu, Environ. Sci. Pollut. Res. 28 (2021) 14253 (http://dx.doi.org/doi:10.1007/s11356-021-12416-9)
F. Parvin, S. Islam, Z. Urmy, S. Ahmed, A.K.M. Saiful Islam, Biomed. J. Sci. Technol. Res. 28 (2020) 21831 (http://dx.doi.org/doi:10.26717/BJSTR.2020.28.004692)
S. Mor, M.K. Chhavi, K.K. Sushil, K. Ravindra, Environ. Dev. Sustain. 20 (2018) 625 (http://dx.doi.org/doi:10.1007/s10668-016-9902-8)
M.D. Tenev, A. Farías, C. Torre, G. Fontana, N. Caracciolo, S.P. Boeykens, J. Sustain. Develop. Energy, Water Environ. Systems 7 (2019) 667 (http://dx.doi.org/doi:10.13044/j.sdewes.d7.0269)
S. Khamparia, D. Kaur Jaspal, Front. Env. Sci. Eng. 11 (2017) 1 (http://dx.doi.org/doi:10.1007/s11783-017-0899-5)
S. Rangabhashiyam, N. Anu, N. Selvaraju, J. Environ. Chem. Eng. 1 (2013) 629 (http://dx.doi.org/doi:10.1016/j.jece.2013.07.014)
M. Kostic, B. Pejic, M.Vukcevic, in Chemistry of Lignocellulosics: Current Trends, T. Stevanovic, Ed., Taylor & Francis Group/CRC Press, Boca Raton, FL, 2018, p. 3 (https://www.crcpress.com/Chemistry-of-Lignocellulosics-Current-Trends/Stevanovic/p/book/9781498775694)
B.D. Lazić, B.M. Pejić, A.D. Kramar, M.M. Vukčević, K.R. Mihajlovski, J.D. Rusmirović, M.M. Kostić, Cellulose 25 (2018) 697 (https://doi.org/10.1007/s10570-017-1575-4)
Pejić, M. Vukčević, M. Kostić, in Sustainable Agriculture Reviews 42, G. Crini, E. Lichtfouse, Eds., Springer Nature Switzerland AG, Cham, 2020, p. 111 (https://doi.org/10.1007/978-3-030-41384-2_4)
J.G.G. De Farias, R.C. Cavalcante, B.R. Canabarro, H.M. Viana, S. Scholz, R.A. Simão, Carbohyd. Polym. 165 (2017) 429 (http://dx.doi.org/10.1016/j.carbpol.2017.02.042)
Dai, M. Fan, Vib. Spectrosc. 55 (2011) 300 (http://dx.doi.org/10.1016/j.vibspec.2010.12.009)
Donelli, G. Freddi, V.A. Nierstrasz, Paola Taddei, Polym. Degrad. Stabil. 95 (2010) 1542 (http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.011)
Fakin, V. Golob, K. Stana Kleinschek, A. Majcen, L. Marechal, Text. Res. J. 76 (2006) 448 (http://dx.doi.org/10.1177/0040517506062767)
M. Vukcevic, B. Pejic, M. Lausevic, I. Pajic-Lijakovic, M. Kostic, Fiber. Polym. 15 (2014) 687 (http://dx.doi.org/10.1007/s12221-014-0687-9)
N. Saha, M. Volpe, L. Fiori, R. Volpe, A. Messineo, M. Toufiq Reza, Energies 13 (2020) 4686 (http://dx.doi.org/10.3390/en13184686)
S. Lagergren, Handlingar 24 (1898) 1
Y. S. Ho, G. Mckay, Process Biochem. 34 (1999) 451 (http://dx.doi.org/10.1016/S0032-9592(98)00112-5)
W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Civil. Eng. 89 (1963) 31
C. Aharoni, M. Ungarish, J. Chem. Soc. Faraday Trans. 1 (1976) 265 (https://doi.org/10.1039/F19767200400)
Langmuir, J. Am. Chem. Soc. 40 (1918) 1361
H.M.F. Freundlich, Phys. Chem. 57 (1906) 384
Harrou, E. Gharibi, H. Nasri, M. El Ouahabi, SN Appl. Sci. 2 (2020) 277 (https://doi.org/10.1007/s42452-020-2067-y)
R.M. Kozasowski, M. Mackiewicz-Talarczyk, A.M. Allam, in Handbook of Natural Fibres Volume 1, R.M. Kozłowski, Ed., Woodhead Publishing Limited, Sawston, Cambridge, 2012, p. 56
H. Zhang, R. Ming, G. Yang, Y. Li, Q. Li, H. Shao, Polym. Eng. Sci. 55 (2015) 2553 (https://doi.org/10.1002/pen.24147)
M.A. Sawpan, K.L. Pickering, Alan Fernyhough, Compos., A 42 (2011) 888 (https://doi.org/10.1016/j.compositesa.2011.03.008)
A.A. Younis, Egypt. J. Pet. 25 (2016) 161 (http://dx.doi.org/10.1016/j.ejpe.2015.04.001)
S. Mihajlović, M. Vukčević, B. Pejić, A. Perić-Grujić, M. Ristić, K. Trivunac, J. Nat. Fibers (2021) 9860 (https://doi.org/10.1080/15440478.2021.1993414)
J.J. Salazar-Rabago, R. Leyva-Ramos, J. Rivera-Utrilla, R. Ocampo-Perez, F.J. Cerino-Cordova, Sustain. Environ. Res. 27 (2017) 32 (http://dx.doi.org/10.1016/j.serj.2016.11.009)
Salah Omer, G.A. El Naeem, A.I. Abd-Elhamid, O.O.M. Farahat, A.A. El-Bardan, He.M.A. Soliman, A.A. Nayl, J. Mater. Res. Technol. 19 (2022) 3241 (https://doi.org/10.1016/j.jmrt.2022.06.045).