Amino-starch derivates for adsorption of specific pharmaceuticals and pesticides in contaminated water: Examination in both spiked and real water samples
Main Article Content
Abstract
In this study, the possibility of using modified potato starch, with nitrogen-containing chemical agents (melamine, cysteine, and histidine) as green adsorbents for removing pharmaceuticals and pesticides from water has been investigated. The influence of additional modification of amino-starch with clay and diatomaceous earth was examined. The effect of the applied modification on the structural, surface, and morphological properties was determined by FTIR, XRD, and SEM analysis, while the adsorption properties were determined through the effectiveness of prepared materials to remove selected pollutants from spiked and real water samples. The efficiency of investigated amino-starches for the adsorption of pharmaceuticals and pesticides decreases in order: starch-histidine>starch-cysteine>starch-melamine, with a slightly better efficiency for pharmaceuticals adsorption. Additional modification of amino-starches with clay/diatomaceous earth did not contribute to the increase in adsorption efficiency. It was found that the influence of the matrix of real water samples on the adsorption efficiency is up to 10 %, which represents a promising potential for applying amino-starch as a cheap and effective adsorbent for wastewater treatment. Also, starch-histidine and starch-cysteine showed the possibility of reusing up to three cycles of adsorption.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-65/2024-03/200135;451-03-66/2024-03/200287
References
O. I. González Peña, M. Á. López Zavala, H. Cabral Ruelas, Int. J. Environ. Res. Public Health 18 (2021) 5 (http://doi.org/10.3390/ijerph18052532)
M. Z. Hosain, S. M. Lutful Kabir, M. M. Kamal, Vet. World 14 (2021) 210 (http://doi.org/10.14202/VETWORLD.2021.210-221)
A. J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Emerg. Contam. 3 (2017) 1 (http://doi.org/10.1016/j.emcon.2016.12.004)
K. H. Kim, E. Kabir, S. A. Jahan, Sci.Total Environ. 575 (2017) 525 (http://doi.org/10.1016/j.scitotenv.2016.09.009)
N. Karić, M. Vukčević, M. Maletić, S. Dimitrijević, M. Ristić, A. Perić Grujić, K. Trivunac, Int. J. Biol. Macromol. 241 (2023) 124527 (http://doi.org/10.1016/j.ijbiomac.2023.124527)
R. Natarajan, K. Saikia, S. K. Ponnusamy, A. K. Rathankumar, D. S. Rajendran, S. Venkataraman, D. B. Tannani, V. Arvind, T. Somanna, K. Banerjee, N. Mohideen, V. K. Vaidyanathan, Chemosphere 287 (2022) 131958 (http://doi.org/10.1016/j.chemosphere.2021.131958)
Y. Koriche, M. Darder, P. Aranda, S. Semsari, E. Ruiz-Hitzky, Dalton Transactions. 43 (2014) 10512-10520 (http://doi.org/10.1039/c4dt00330f)
Z. C. Yu, H. L. He, J. Lin, Advanced Materials Research. 821-822 (2013) 535-539. (http://doi.org/10.4028/www.scientific.net/AMR.821-822.535)
S. Lawchoochaisakul, P. Monvisade, P. Siriphannon, Carbohydr. Polym. 253 (2021) 117230 (http://doi.org/10.1016/j.carbpol.2020.117230)
H. Mittal, S. M. Alhassan, S. S. Ray, J. Environ. Chem. Eng. 6 (2018) 6 (http://doi.org/10.1016/j.jece.2018.11.010)
H. Zhu, S. A. Xu, RSC Adv. 8 (2018) 32 (http://doi.org/10.1039/c8ra01846d)
L. Li, L. Liao, Y. Ding, H. Zeng, RSC Adv. 7 (2017) 17 (http://doi.org/10.1039/C6RA24971J)
H. Zaitan, D. Bianchi, O. Achak, T. Chafik, J. Hazard Mater. 153 (2008) 1-2 (http://doi.org/10.1016/j.jhazmat.2007.09.070)
P. Pookmanee, A. Wannawek, S. Satienperakul, R. Putharod, N. Laorodphan, S. Sangsrichan, S. Phanichphant, Materials Science Forum. 872 (2016) 211 (http://doi.org/10.4028/www.scientific.net/MSF.872.211)
D. E. González-Santamaría, A. Justel, R. Fernández, A. I. Ruiz, A. Stavropoulou, J. D. Rodríguez- Blanco, J. Cuevas, Appl Clay Sci. 212 (2021) 106223 (http://doi.org/10.1016/j.clay.2021.106223)
H. Meradi, L. A. Hadi, W. Ghabeche, L. Bahloul, Int. J. Eng. Sci. Technol 9 (2018) ISSN: 1737-9296
L. A. Muñoz, F. Pedreschi, A. Leiva, J. M. Aguilera, J. Food Eng. 152 (2015) 65 (http://doi.org/10.1016/j.jfoodeng.2014.11.017)
S. L. Abdullahi, A. A. Audu, Chem. Search Journal. 8 (2017) 2 (https://www.ajol.info/index.php/csj/article/view/166246)
P. Yuan, D. Liu, D. Y. Tan, K. K. Liu, H. G. Yu, Y. H. Zhong, A. H. Yuan, W. B. Yu, H. P. He, Microporous and Mesoporous Materials. 170 (2013) 9 (http://doi.org/10.1016/j.micromeso.2012.11.030)
S. Elbasuney, A. Baraka, M. Gobara, Y. H. El-Sharkawy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 245 (2021) 118941 (http://doi.org/10.1016/j.saa.2020.118941)
A. A Galhoum, A. A. Atia, M. G. Mahfouz, S. T. Abdel-Rehem, N. A. Gomaa, T. Vincent, E. Guibal, J. Mater. Sci. 50 (2015) 7 (http://doi.org/10.1007/s10853-015-8845-z)
A. B. True, K. Schroeck, T. A. French, C. A. Schmuttenmaer, J. Infrared Millim. Terahertz Waves. 32 (2011) 5 (http://doi.org/10.1007/s10762-010-9645-9)
A. Ansari Mojarad, S. Tamjidi, H. Esmaeili, Int. J. Environ. Anal. Chem. 102 (2022) 19 (http://doi.org/10.1080/03067319.2020.1845665)
G. Aschermann, C. Schröder, F. Zietzschmann, M. Jekel, Chemosphere 237 (2019) 124415 (http://doi.org/10.1016/j.chemosphere.2019.124415)
R. Guillossou, J. Le Roux, R. Mailler, C. S. Pereira-Derome, G. Varrault, A. Bressy, E. Vulliet, C. Morlay, F. Nauleau, V. Rocher, J. Gasperi, Water Res. 172 (2020) 115487 (https://doi.org/10.1016/j.watres.2020.115487)
F. Zietzschmann, C. Stützer, M. Jekel, Water Res. 92 (2016) 180 (http://dx.doi.org/10.1016/j.watres.2016.01.056)
B. Pan, D. Zhang, H. Li, M. Wu, Z. Wang, B. Xing, Environ. Sci. Technol. 47 (2013) 14 (http://doi.org/10.1021/es4008933).
B. Zhang, Y. Jin, X. X. Huang, S. Tang, H. Chen, Y. Su, X. Yu, S. Chen, G. Chen, Chem. Eng. J. 450 (2022) 138264 (http://doi.org/10.1016/j.cej.2022.138264)
Q. Shen, M. H. Xu, T. Wu, G. X. Pan, P. S. Tang, Chemical Papers 76 (2022) 123 (http://doi.org/10.1007/s11696-021-01839-w)
A. K. Mohamed, M. E. Mahmoud, Carbohydr Polym. 245 (2020) 116438 (http://doi.org/10.1016/j.carbpol.2020.116438)
D. A. Mustofa, J. Gamonchuang, R. Burakham, Analytical Sciences 37 (2021) 11 (http://doi.org/10.2116/analsci.21P034)
M. Bouhedda, S. Lefnaoui, S. Rebouh, M. M. Yahoum, Chemometr. Intell. Lab. Syst. 193 (2019) 103843 (http://doi.org/10.1016/j.chemolab.2019.103843)
S. Kang, W. Liu, Y. Wang, Y. Wang, S. Wu, S. Chen, B. Yan, X. Lan, J. Taiwan Inst. Chem. Eng. 135 (2022) 104383 (http://doi.org/10.1016/j.jtice.2022.104383)
A. U. Itodo, I. S. Eneji, T. T. Weor, J. Chem Soc. Nigeria. 43 (2018) 4 (https://journals.chemsociety.org.ng/index.php/jcsn/article/view/216/267)
F. Suo, X. You, Y. Ma, Y. Li, Chemosphere 235 (2019) 918 (http://doi.org/10.1016/j.chemosphere.2019.06.158)
F. Suo, X. Liu, C. Li, M. Yuan, B. Zhang, J. Wang, Y. Ma, Z. Lai, M. Ji, Int. J. Biol. Macromol. 121 (2019) 806 (http://doi.org/10.1016/j.ijbiomac.2018.10.132)
X. Chen, Q. Zhou, F. Liu, Q. Peng, Y. Bian, Environ. Technol. Innov. 21 (2021) 101235 (http://doi.org/10.1016/j.eti.2020.101235).