Amino-starch derivates for adsorption of specific pharmaceuticals and pesticides in contaminated water: Examination in both spiked and real water samples

Main Article Content

Nataša Palić
https://orcid.org/0000-0002-7521-4340
Marija Vukčević
https://orcid.org/0000-0003-0416-0741
Marina Maletić
https://orcid.org/0000-0002-4112-9316
Miljana Mirković
https://orcid.org/0000-0003-2335-455X
Mirjana Ristić
https://orcid.org/0000-0002-8316-1277
Aleksandra Perić Grujić
https://orcid.org/0000-0002-2593-4796
Katarina Trivunac
https://orcid.org/0000-0002-9251-744X

Abstract

In this study, the possibility of using modified potato starch, with nitrogen-containing chemical agents (melamine, cysteine, and histidine) as green adsorbents for removing pharmaceuticals and pesticides from water has been investigated. The influence of additional modification of amino-starch with clay and diatomaceous earth was examined. The effect of the applied modification on the structural, surface, and morphological properties was determined by FTIR, XRD, and SEM analysis, while the adsorption properties were determined through the effectiveness of prepared materials to remove selected pollutants from spiked and real water samples. The efficiency of investigated amino-starches for the adsorption of pharmaceuticals and pesticides decreases in order: starch-histidine>starch-cysteine>starch-melamine, with a slightly better efficiency for pharmaceuticals adsorption. Additional modification of amino-starches with clay/diatomaceous earth did not contribute to the increase in adsorption efficiency. It was found that the influence of the matrix of real water samples on the adsorption efficiency is up to 10 %, which represents a promising potential for applying amino-starch as a cheap and effective adsorbent for wastewater treatment. Also, starch-histidine and starch-cysteine showed the possibility of reusing up to three cycles of adsorption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Palić, “Amino-starch derivates for adsorption of specific pharmaceuticals and pesticides in contaminated water: Examination in both spiked and real water samples”, J. Serb. Chem. Soc., Jan. 2025.
Section
Environmental Chemistry

Funding data

References

O. I. González Peña, M. Á. López Zavala, H. Cabral Ruelas, Int. J. Environ. Res. Public Health 18 (2021) 5 (http://doi.org/10.3390/ijerph18052532)

M. Z. Hosain, S. M. Lutful Kabir, M. M. Kamal, Vet. World 14 (2021) 210 (http://doi.org/10.14202/VETWORLD.2021.210-221)

A. J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Emerg. Contam. 3 (2017) 1 (http://doi.org/10.1016/j.emcon.2016.12.004)

K. H. Kim, E. Kabir, S. A. Jahan, Sci.Total Environ. 575 (2017) 525 (http://doi.org/10.1016/j.scitotenv.2016.09.009)

N. Karić, M. Vukčević, M. Maletić, S. Dimitrijević, M. Ristić, A. Perić Grujić, K. Trivunac, Int. J. Biol. Macromol. 241 (2023) 124527 (http://doi.org/10.1016/j.ijbiomac.2023.124527)

R. Natarajan, K. Saikia, S. K. Ponnusamy, A. K. Rathankumar, D. S. Rajendran, S. Venkataraman, D. B. Tannani, V. Arvind, T. Somanna, K. Banerjee, N. Mohideen, V. K. Vaidyanathan, Chemosphere 287 (2022) 131958 (http://doi.org/10.1016/j.chemosphere.2021.131958)

Y. Koriche, M. Darder, P. Aranda, S. Semsari, E. Ruiz-Hitzky, Dalton Transactions. 43 (2014) 10512-10520 (http://doi.org/10.1039/c4dt00330f)

Z. C. Yu, H. L. He, J. Lin, Advanced Materials Research. 821-822 (2013) 535-539. (http://doi.org/10.4028/www.scientific.net/AMR.821-822.535)

S. Lawchoochaisakul, P. Monvisade, P. Siriphannon, Carbohydr. Polym. 253 (2021) 117230 (http://doi.org/10.1016/j.carbpol.2020.117230)

H. Mittal, S. M. Alhassan, S. S. Ray, J. Environ. Chem. Eng. 6 (2018) 6 (http://doi.org/10.1016/j.jece.2018.11.010)

H. Zhu, S. A. Xu, RSC Adv. 8 (2018) 32 (http://doi.org/10.1039/c8ra01846d)

L. Li, L. Liao, Y. Ding, H. Zeng, RSC Adv. 7 (2017) 17 (http://doi.org/10.1039/C6RA24971J)

H. Zaitan, D. Bianchi, O. Achak, T. Chafik, J. Hazard Mater. 153 (2008) 1-2 (http://doi.org/10.1016/j.jhazmat.2007.09.070)

P. Pookmanee, A. Wannawek, S. Satienperakul, R. Putharod, N. Laorodphan, S. Sangsrichan, S. Phanichphant, Materials Science Forum. 872 (2016) 211 (http://doi.org/10.4028/www.scientific.net/MSF.872.211)

D. E. González-Santamaría, A. Justel, R. Fernández, A. I. Ruiz, A. Stavropoulou, J. D. Rodríguez- Blanco, J. Cuevas, Appl Clay Sci. 212 (2021) 106223 (http://doi.org/10.1016/j.clay.2021.106223)

H. Meradi, L. A. Hadi, W. Ghabeche, L. Bahloul, Int. J. Eng. Sci. Technol 9 (2018) ISSN: 1737-9296

L. A. Muñoz, F. Pedreschi, A. Leiva, J. M. Aguilera, J. Food Eng. 152 (2015) 65 (http://doi.org/10.1016/j.jfoodeng.2014.11.017)

S. L. Abdullahi, A. A. Audu, Chem. Search Journal. 8 (2017) 2 (https://www.ajol.info/index.php/csj/article/view/166246)

P. Yuan, D. Liu, D. Y. Tan, K. K. Liu, H. G. Yu, Y. H. Zhong, A. H. Yuan, W. B. Yu, H. P. He, Microporous and Mesoporous Materials. 170 (2013) 9 (http://doi.org/10.1016/j.micromeso.2012.11.030)

S. Elbasuney, A. Baraka, M. Gobara, Y. H. El-Sharkawy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 245 (2021) 118941 (http://doi.org/10.1016/j.saa.2020.118941)

A. A Galhoum, A. A. Atia, M. G. Mahfouz, S. T. Abdel-Rehem, N. A. Gomaa, T. Vincent, E. Guibal, J. Mater. Sci. 50 (2015) 7 (http://doi.org/10.1007/s10853-015-8845-z)

A. B. True, K. Schroeck, T. A. French, C. A. Schmuttenmaer, J. Infrared Millim. Terahertz Waves. 32 (2011) 5 (http://doi.org/10.1007/s10762-010-9645-9)

A. Ansari Mojarad, S. Tamjidi, H. Esmaeili, Int. J. Environ. Anal. Chem. 102 (2022) 19 (http://doi.org/10.1080/03067319.2020.1845665)

G. Aschermann, C. Schröder, F. Zietzschmann, M. Jekel, Chemosphere 237 (2019) 124415 (http://doi.org/10.1016/j.chemosphere.2019.124415)

R. Guillossou, J. Le Roux, R. Mailler, C. S. Pereira-Derome, G. Varrault, A. Bressy, E. Vulliet, C. Morlay, F. Nauleau, V. Rocher, J. Gasperi, Water Res. 172 (2020) 115487 (https://doi.org/10.1016/j.watres.2020.115487)

F. Zietzschmann, C. Stützer, M. Jekel, Water Res. 92 (2016) 180 (http://dx.doi.org/10.1016/j.watres.2016.01.056)

B. Pan, D. Zhang, H. Li, M. Wu, Z. Wang, B. Xing, Environ. Sci. Technol. 47 (2013) 14 (http://doi.org/10.1021/es4008933).

B. Zhang, Y. Jin, X. X. Huang, S. Tang, H. Chen, Y. Su, X. Yu, S. Chen, G. Chen, Chem. Eng. J. 450 (2022) 138264 (http://doi.org/10.1016/j.cej.2022.138264)

Q. Shen, M. H. Xu, T. Wu, G. X. Pan, P. S. Tang, Chemical Papers 76 (2022) 123 (http://doi.org/10.1007/s11696-021-01839-w)

A. K. Mohamed, M. E. Mahmoud, Carbohydr Polym. 245 (2020) 116438 (http://doi.org/10.1016/j.carbpol.2020.116438)

D. A. Mustofa, J. Gamonchuang, R. Burakham, Analytical Sciences 37 (2021) 11 (http://doi.org/10.2116/analsci.21P034)

M. Bouhedda, S. Lefnaoui, S. Rebouh, M. M. Yahoum, Chemometr. Intell. Lab. Syst. 193 (2019) 103843 (http://doi.org/10.1016/j.chemolab.2019.103843)

S. Kang, W. Liu, Y. Wang, Y. Wang, S. Wu, S. Chen, B. Yan, X. Lan, J. Taiwan Inst. Chem. Eng. 135 (2022) 104383 (http://doi.org/10.1016/j.jtice.2022.104383)

A. U. Itodo, I. S. Eneji, T. T. Weor, J. Chem Soc. Nigeria. 43 (2018) 4 (https://journals.chemsociety.org.ng/index.php/jcsn/article/view/216/267)

F. Suo, X. You, Y. Ma, Y. Li, Chemosphere 235 (2019) 918 (http://doi.org/10.1016/j.chemosphere.2019.06.158)

F. Suo, X. Liu, C. Li, M. Yuan, B. Zhang, J. Wang, Y. Ma, Z. Lai, M. Ji, Int. J. Biol. Macromol. 121 (2019) 806 (http://doi.org/10.1016/j.ijbiomac.2018.10.132)

X. Chen, Q. Zhou, F. Liu, Q. Peng, Y. Bian, Environ. Technol. Innov. 21 (2021) 101235 (http://doi.org/10.1016/j.eti.2020.101235).

Most read articles by the same author(s)