A computational study of the potential bioactivity of hibiscus and garcinia acids against SARS-CoV-2

Main Article Content

Dr. López-Orozco
https://orcid.org/0000-0003-4614-2234
Luis Humberto Mendoza-Huizar
https://orcid.org/0000-0003-2373-4624
Dr. Alvarez-Romero
https://orcid.org/0000-0002-9525-3937
Dr. Torres-Valencia
https://orcid.org/0000-0001-6426-7562

Abstract

A computational chemical study was conducted on the diastereoisomers of hibiscus acid (HA) and garcinia acid (GA), investigating their docking capabilities with the main protease (6LU7) of SARS-CoV-2. Electrostatic potential mappings unveiled negative charges associated with the carboxyl and hydroxyl groups positioned at C-2 and C-3 for both hibiscus and garcinia acids. However, the presence of more negative potentials around C-2 and C-3 of hibiscus acid, compared to garcinia acid, suggests that substituents in the (2S,3R) configuration possess a stronger electron-attracting capacity than those in the (2S,3S) configuration. Molecular docking studies indicated that both hibiscus acid and garcinia acid bind to the main protease through the catalytic pocket. Nonetheless, molecular dynamics simulations revealed that only HA remained bound to the active site for 100 ns with an RMSD of less than 1 Å, whereas GA dissociated from the complex within the initial 16 ns. These findings illuminate the differential binding behaviors of the two compounds, with implications for potential therapeutic interventions against SARS-CoV-2. These findings shed light on the differential binding behaviors of the two compounds, holding implications for potential therapeutic interventions against SARS-CoV-2.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
W. López-Orozco, L. H. Mendoza-Huizar, G. A. Alvarez-Romero, and J. de J. M. Torres-Valencia, “A computational study of the potential bioactivity of hibiscus and garcinia acids against SARS-CoV-2”, J. Serb. Chem. Soc., Aug. 2024.
Section
Theoretical Chemistry

Funding data

References

T. I. Ng, I. Correia, J. Seagal, D. A. Degoey, M. R. Schrimpf, D. J. Hardee, E. L. Noey, W. M. Kati, Viruses 14 (2022) 961 (http://dx.doi.org/10.3390/V14050961)

Y. L. Ng, C. K. Salim, J. J. H. Chu, Pharmacol. Ther. 228 (2021) 107930 (http://dx.doi.org/10.1016/J.PHARMTHERA.2021.107930)

C. L. Bellera, M. Llanos, M. E. Gantner, S. Rodriguez, L. Gavernet, M. Comini, A. Talevi, Expert Opin. Drug Discov. 16 (2021) 605–612 (http://dx.doi.org/10.1080/17460441.2021.1863943)

I. Aanouz, A. Belhassan, K. El-Khatabi, T. Lakhlifi, M. El-ldrissi, M. Bouachrine, J. Biomol. Struct. Dyn. 39 (2021) 2971–2979 (http://dx.doi.org/10.1080/07391102.2020.1758790)

S. Yagi, A. Yagi, Curr. Tradit. Med. 9 (2023) 39-54 (http://dx.doi.org/10.2174/2215083809666230206114117)

A. Ghosh, S. Chakraborty, S. Majumder, M. Bhattacharya, Lett. Appl. NanoBioScience 12 (2023) 26–32 (http://dx.doi.org/10.33263/LIANBS124.108)

M. T. Quimque, K. I. Notarte, X. A. Adviento, M. H. Cabunoc, V. N. de Leon, F. S. L. delos Reyes, E. J. Lugtu, J. A. Manzano, S. N. Monton, J. E. Muñoz, K. D. Ong, D. Y. Pilapil, V. Roque, S. M. Tan, J. A. Lim, A. P. Macabeo, Comb. Chem. High Throughput Screen. 26 (2021) 459–488 (http://dx.doi.org/10.2174/1386207325666210917113207)

R. B. Malabadi, K. P. Kolkar, N. T. Meti, R. K. Chalannavar, Int. J. Innov. Sci. Res. Rev. 3 (2021) 1507–1517. (https://journalijisr.com/sites/default/files/issues-pdf/IJISRR-600.pdf)

Y. T. M. Alharbi, W. M. Abdel-Mageed, O. A. Basudan, R. A. Mothana, M. Tabish Rehman, A. A. ElGamal, A. S. Alqahtani, O. I. Fantoukh, M. F. AlAjmi, Saudi Pharm. J. 32 (2024) 102023 (http://dx.doi.org/10.1016/J.JSPS.2024.102023)

M. Ariefin, R. R. Saputra, I. N. Pramesti, AIP Conf. Proc. 3055 (2024) 040001 (https://doi.org/10.1063/5.0193646)

S. T. Selvan, M. K. D. Jothinathan, Cureus 16 (2024) 1-10. (http://dx.doi.org/10.7759/CUREUS.57151)

M. A. Khanfar, M. I. Saleh, Curr. Med. Chem. 16(3) (2024) e57151 (http://dx.doi.org/10.2174/0109298673271674231109052709)

E. Akbaba, D. Karatas, J. Inst. Sci. Tech. 13 (2023) 872–888 (http://dx.doi.org/10.21597/jist.1187616)

S. Das, S. Satapathy, D. Acharya, S. Kumar Sahu, Res. Sq. 2023 (2023) 1–12 (http://dx.doi.org/10.21203/RS.3.RS-2837087/V1)

C. Parga-Lozano, Duazary 17 (2020) 1–3 (http://dx.doi.org/10.21676/2389783x.3597)

C. H. Parga-Lozano, Biomed. J. Sci. Tech. Res. 35 (2021) 28000–28004 (http://dx.doi.org/10.26717/bjstr.2021.35.005761)

N. Balmeh, S. Mahmoudi, N. Mohammadi, A. Karabedianhajiabadi, Informatics Med. Unlocked 20 (2020) 100407 (http://dx.doi.org/10.1016/J.IMU.2020.100407)

S. Mahmoudi, N. Balmeh, N. Mohammadi, T. Sadeghian-Rizi, Avicenna J. Med. Biotechnol. 13 (2021) 107 (http://dx.doi.org/10.18502/AJMB.V13I3.6370)

N. Ohta, K. Inokuma, K. Miyabayashi, M. Miyake, I. Yagi, Electrochemistry 78 (2012) 132–135 (http://dx.doi.org/10.5796/electrochemistry.78.132)

N. F. Ramadhani, A. P. Nugraha, D. Rahmadhani, M. S. Puspitaningrum, Y. Rizqianti, V. D. Kharisma, T. N. E. B. T. A. Noor, R. D. Ridwan, D. S. Ernawati, A. P. Nugraha, J. Pharm. Pharmacogn. Res. 10 (2022) 418–428 (http://dx.doi.org/10.56499/jppres21.1316_10.3.418)

S. Guardiola, N. Mach, Endocrinol. y Nutr. 61 (2014) 274–295 (http://dx.doi.org/10.1016/j.endonu.2013.10.012)

E. Shawky, A. A. Nada, R. S. Ibrahim, RSC Adv. 10 (2020) 27961–27983 (http://dx.doi.org/10.1039/d0ra05126h)

O. A. Olajide, V. U. Iwuanyanwu, I. Lepiarz-Raba, A. A. Al-Hindawi, M. A. Aderogba, H. L. Sharp, R. J. Nash, Phyther. Res. 35 (2021) 6963–6973 (http://dx.doi.org/10.1002/ptr.7315)

H. Y. Aati, A. Ismail, M. E. Rateb, A. M. AboulMagd, H. M. Hassan, M. H. Hetta, Plants 11 (2022) 2521 (http://dx.doi.org/10.3390/PLANTS11192521)

A. J. Akindele, A. Sowemimo, F. O. Agunbiade, M. O. Sofidiya, O. Awodele, O. Ade-Ademilua, I. Orabueze, I. O. Ishola, C. I. Ayolabi, O. B. Salu, M. O. Akinleye, I. A. Oreagba, Nat. Prod. Commun. 17 (2022) 1–43 (https://doi.org/10.1177/1934578X221096968)

O. P. Abodunrin, O. F. Onifade, A. E. Adegboyega, Informatics Med. Unlocked 31 (2022) 100964 (http://dx.doi.org/10.1016/J.IMU.2022.100964)

D. Muralitharan, V. Varadharajan, B. Venkidasamy, J. Mol. Recognit. 36 (2023) e3055 (http://dx.doi.org/10.1002/JMR.3055)

N. S. Aini, V. D. Kharisma, M. H. Widyananda, A. A. A. Murtadlo, R. T. Probojati, D. D. R. Turista, M. B. Tamam, V. Jakhmola, E. Yuniarti, S. Al Aziz, M. R. Ghifari, M. T. Albari, R. S. Mandeli, M. A. Ghifari, D. Purnamasari, B. Oktavia, A. P. Lubis, F. Azra, F. Fitri, A. N. M. Ansori, M. Rebezov, R. Zainul, Pharmacogn. J. 14 (2022) 575–579 (http://dx.doi.org/10.5530/pj.2022.14.138)

A. N. M. Ansori, V. D. Kharisma, A. A. Parikesit, F. A. Dian, R. T. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Y. Antonius, M. R. F. Pratama, N. I. Sumantri, T. H. Sucipto, R. Zainul, Pharmacogn. J. 14 (2022) 85–90 (http://dx.doi.org/10.5530/pj.2022.14.12)

V. D. Kharisma, A. N. M. Ansori, Y. Antonius, I. Rosadi, A. A. A. Murtadlo, V. Jakhmola, M. Rebezov, N. Maksimiuk, E. Kolesnik, P. Burkov, M. Derkho, P. Scherbakov, M. E. Ullah, T. H. Sucipto, H. Purnobasuki, J. Pharm. Pharmacogn. Res. 11 (2023) 743–756 (http://dx.doi.org/10.56499/JPPRES23.1650_11.5.743)

O. A. Kolawole, T. G. Femi, O. E. Kolawole, O. O. Monisola, O. Temitope, A. B. Benjamin, A. S. Adewale, S. Banj, Nat Sci 18 (2020) 78–85 (http://dx.doi.org/10.7537/marsnsj180920.10)

A. Kalita, M. Das, B. Das, M. R. Baro, Beni-Suef Univ. J. Basic Appl. Sci. 11 (2022) 1–17 (http://dx.doi.org/10.1186/S43088-022-00214-2/FIGURES/10)

N. Khamthong, N. Hutadilok-Towatana, Nat. Prod. Commun. 12 (2017) 453–460 (http://dx.doi.org/10.1177/1934578x1701200337)

G. I. P. Pozos, M. A. Ruiz-López, J. F. Z. Nátera, C. Á. Moya, L. B. Ramírez, M. R. Silva, R. R. Macías, P. M. García-López, R. G. Cruz, E. S. Pérez, J. J. V. Radillo, Appl. Sci. 10 (2020) 560 (http://dx.doi.org/10.3390/app10020560)

P. M. Afladhanti, M. D. Romadhan, H. A. Hamzah, Q. Bhelqis, Sriwij. J. Med. 5 (2022) 31–40 (http://dx.doi.org/10.32539/SJM.V5I1.127)

A. N. M. Ansori, V. D. Kharisma, A. A. Parikesit, F. A. Dian, R. T. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Y. Antonius, M. R. F. Pratama, N. I. Sumantri, T. H. Sucipto, R. Zainul, Pharmacogn. J. 14 (2022) 85–90 (http://dx.doi.org/10.5530/PJ.2022.14.12)

D. Ganjewala, H. Bansal, R. Mittal, G. Srivastava, Herb. Med. A Boon Heal. Hum. Life (2022) 471–500 (http://dx.doi.org/10.1016/B978-0-323-90572-5.00012-3)

J. A. Izquierdo-Vega, D. A. Arteaga-Badillo, M. Sánchez-Gutiérrez, J. A. Morales-González, N. Vargas-Mendoza, C. A. Gómez-Aldapa, J. Castro-Rosas, L. Delgado-Olivares, E. Madrigal-Bujaidar, E. Madrigal-Santillán, Biomedicines 8 (2020) 100 (http://dx.doi.org/10.3390/BIOMEDICINES8050100)

R. A. El-Shiekh, U. R. Abdelmohsen, H. M. Ashour, R. M. Ashour, Antibiotics 9 (2020) 756 (http://dx.doi.org/10.3390/antibiotics9110756)

L. O. Chuah, W. Y. Ho, B. K. Beh, S. K. Yeap, Evidence-Based Complement. Altern. Med. 2013 (2013) 751658 (http://dx.doi.org/10.1155/2013/751658)

S. Kim, Y. Kim, J. W. Kim, Y. Hwang, S. H. Kim, Y. H. Jang, J. Life Sci. 32 (2022) 375–390 (https://doi.org/10.5352/JLS.2022.32.5.375)

Y. Takeda, Y. Okuyama, H. Nakano, Y. Yaoita, K. Machida, H. Ogawa, K. Imai, Food Environ. Virol. 12 (2020) 9–19 (http://dx.doi.org/10.1007/s12560-019-09408-x)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650–654 (http://dx.doi.org/10.1063/1.438955)

A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39 (2011) W270 (http://dx.doi.org/10.1093/NAR/GKR366)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 25 (2004) 1605–1612 (http://dx.doi.org/10.1002/jcc.20084)

Biovia Dassault Systèmes, Discovery Studio Visualiser 2019, Dassault Systèmes, San Diego, 2020 (http://dx.doi.org/https://discover.3ds.com/discovery-studio-visualizer-download)

C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. De Groot, H. Grubmüller, J. Comput. Chem. 36 (2015) 1990–2008 (http://dx.doi.org/10.1002/JCC.24030)

J. V. Vermaas, D. J. Hardy, J. E. Stone, E. Tajkhorshid, A. Kohlmeyer, J. Chem. Inf. Model. 56 (2016) 1112–1116 (http://dx.doi.org/10.1021/acs.jcim.6b00103)

W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118 (1996) 11225–11236 (http://dx.doi.org/10.1021/ja9621760)

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 79 (1983) 926–935 (http://dx.doi.org/10.1063/1.445869)

G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, Nucleic Acids Res. 49 (2021) W5–W14 (http://dx.doi.org/10.1093/nar/gkab255)

C. A. Lipinski, Drug Discov. Today Technol. 1 (2004) 337–341 (http://dx.doi.org/10.1016/J.DDTEC.2004.11.007)

J. L. Dahlin, M. A. Walters, Assay Drug Dev. Technol. 14 (2016) 168–174 (http://dx.doi.org/10.1089/adt.2015.674)

J. J. Irwin, K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, M. Khurelbaatar, Y. S. Moroz, J. Mayfield, R. A. Sayle, J. Chem. Inf. Model. 60 (2020) 6065–6073 (http://dx.doi.org/10.1021/ACS.JCIM.0C00675)

M. Sargolzaei, J. Mol. Graph. Model. 103 (2021) 107803 (http://dx.doi.org/10.1016/j.jmgm.2020.107803)

M. A. Said, D. J. O. Khan, F. F. Al-Blewi, N. S. Al-Kaff, A. A. Ali, N. Rezki, M. R. Aouad, M. Hagar, Vaccines 9 (2021) 1012 (https://doi.org/10.3390/vaccines9091012)

A. Marques Da Fonseca, A. Luthierre, G. Cavalcante, R. Mateus, M. Carvalho, J. Falcão Do Amaral, R. P. Colares, E. S. Marinho, M. M. Neto, P. Colares, Int. J. Res. -GRANTHAALAYAH 8 (2020) 164–174 (http://dx.doi.org/10.29121/GRANTHAALAYAH.V8.I11.2020.2342)

P. Gale, Microb. Risk Anal. 21 (2022) 100198 (http://dx.doi.org/10.1016/j.mran.2021.100198)

M. Popovic, Vaccines 10 (2022) 2112 (http://dx.doi.org/10.3390/vaccines10122112)

M. Popovic, J. H. Martin, R. J. Head, Heliyon 9 (2023) e17174 (http://dx.doi.org/10.1016/j.heliyon.2023.e17174)

P. Gale, Microb. Risk Anal. 16 (2020) 100140 (http://dx.doi.org/10.1016/j.mran.2020.100140)

M. E. Popović, G. Šekularac, M. Popović, Microb. Risk Anal. 26 (2024) 100290 (http://dx.doi.org/10.1016/J.MRAN.2024.100290)

J. M. Casasnovas, T. A. Springer, J. Biol. Chem. 270 (1995) 13216–13224 (http://dx.doi.org/10.1074/jbc.270.22.13216)

Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, Nature 582 (2020) 289–293 (http://dx.doi.org/10.1038/S41586-020-2223-Y).

Most read articles by the same author(s)