Influence of N doping on structural and photocatalytic properties of hydrothermally synthesized TiO2/carbon composites Scientific paper

Main Article Content

Marina Maletić
https://orcid.org/0000-0002-4112-9316
Ana Kalijadis
https://orcid.org/0000-0002-6897-4691
Vladimir Lazović
https://orcid.org/0000-0001-6158-2540
Snežana Trifunović
https://orcid.org/0000-0001-9528-6686
Biljana Babić
https://orcid.org/0000-0002-6269-7822
Aleksandra Dapčević
https://orcid.org/0000-0001-7650-7156
Janez Kovač
Marija Vukčević
https://orcid.org/0000-0003-0416-0741

Abstract

N-doped TiO2/carbon composites (TiO2/CN) with different nitrogen content, were obtained starting from titanium isopropoxide and glucose, and by varying the amount of melamine, added to starting reaction mixture. For com­parison, an undoped sample (TiO2/C) was also prepared. Structural and surface characteristics were determined through scanning electron microscopy, thermo­gravimetric analysis, elemental analysis, Fourier transform infrared spectro­scopy, X-ray photoelectron spectroscopy, X-ray diffraction and nitrogen ads­orption–desorption isotherms. The photocatalytic activity of TiO2/CN com­posites was examined via photocatalytic degradation of methylene blue and multiclass pharmaceuticals from water solution. It was found that N doping of TiO2/carbon composites induced changes in structural and surface character­istics of TiO2/CN composites, improving their adsorption, but decreasing photocatalytic efficiency. Nevertheless, TiO2/CN0.05 composite obtained by the hydrothermal synthesis in the presence of glucose and 0.05 g melamine showed the highest efficiency for removing selected pharmaceuticals and methylene blue from aqueous solutions through the combined processes of adsorption in the dark, and photocatalytic degradation under UV and visible irradiation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Maletić, “Influence of N doping on structural and photocatalytic properties of hydrothermally synthesized TiO2/carbon composites: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 2, pp. 183–197, Nov. 2022.
Section
Materials
Author Biography

Janez Kovač, Department of Surface Engineering, Institute Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia

   

Funding data

References

N. C. T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, Appl. Catal., B 193 (2016) 67 (http://dx.doi.org/10.1016/j.apcatb.2016.04.016)

B. Farkas, P. Heszler, J. Budai, A. Oszkó, M. Ottosson, Z. Geretovszky, Appl. Surf. Sci. 433 (2018) 149 (https://doi.org/10.1016/j.apsusc.2017.09.181)

R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114 (2014) 9824 (https://dx.doi.org/10.1021/cr5000738)

Y.T. Lin, C.H. Weng, Y.H. Lin, C.C. Shiesh, F.Y. Chen, Sep. Purif. Technol. 116 (2013) 114 (http://dx.doi.org/10.1016/j.seppur.2013.05.018)

K. Siuzdak, M. Szkoda, A. Lisowska-Oleksiak, K. Grochowska, J. Karczewski, J. Ryl, Appl. Surf. Sci. 357 (2015) 942 (http://dx.doi.org/10.1016/j.apsusc.2015.09.130)

K. Pathakoti, S. Morrow, C. Han, M. Pelaez, X. He, D. D. Dionysiou, H. M. Hwang, Environ. Sci. Technol. 47 (2013) 9988 (https://dx.doi.org/10.1021/es401010g)

N. X. Qian, X. Zhang, M. Wangb, X. Sun, X. Y. Sun, C. Liu, R. Rao, Y. Q. Ma, J. Photochem. Photobiol., A 386 (2020) 112127 (https://doi.org/10.1016/j.jphotochem.2019.112127)

M. Maletić, M. Vukčević, A. Kalijadis, I. Janković-Častvan, A. Dapčević, Z. Laušević, M. Laušević, Arab. J. Chem. 12 (2019) 4388 (http://dx.doi.org/10.1016/j.arabjc.2016.06.020)

M. Maletić, M. Vukčević, A. Kalijadis, Z. Laušević, M. Laušević, Adv. Mater. Sci. Eng. (2015) 803492 (http://dx.doi.org/10.1155/2015/803492)

H. Belayachi, B. Bestani, N. Benderdouche, M. Belhakem, Arab. J. Chem. 12 (2019) 3018 (http://dx.doi.org/10.1016/j.arabjc.2015.06.040)

Commission implementing Decision (EU) 2015/495,Off. J. Eur.n Union L78(58) (2015) 40 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.078.01.0040.01.ENG&toc=OJ%3AL%3A2015%3A078%3ATOC)

E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 (https://doi.org/10.1021/ja01145a126)

B.C. Lippens, B.G. Linsen, J.H. De Boer, J. Catal. 3 (1964) 32 (https://doi.org/10.1016/0021-9517(64)90089-2)

W. Kraus, G. Nolze, Powder Cell for Windows, V.2.4, Federal Institute for Materials Research and Testing, Berlin (https://powdercell-for-windows.software.informer.com/2.4/)

M. Sathish, B. Viswanathan, R. P. Viswanath, Appl. Catal., . 74 (2007) 307 (https://doi.org/10.1016/j.apcatb.2007.03.003)

J. Zhang, Y. Li, L. Li, W. Li, C. Yang, ACS Sustain. Chem. Eng. 6 (2018) 12893 (https://doi.org/10.1021/acssuschemeng.8b02264)

H. He, H. Wang, D. Sun, M. Shao, X. Huang, Y. Tang, Electrochim. Acta 236 (2017) 43 (http://dx.doi.org/10.1016/j.electacta.2017.03.104)

K. Kalantari, M. Kalbasia, M. Sohrabi, S. J. Royaee, Ceram. Int. 43 (2017) 973 (http://dx.doi.org/10.1016/j.ceramint.2016.10.028)

H. Safardoust-Hojaghan, M. Salavati-Niasari, J. Clean. Prod. 148 (2017) 31 (http://dx.doi.org/10.1016/j.jclepro.2017.01.169)

W. Ji, Y.G. Mei, M. Yang, H. Liu, S. Wang, Z. Shan, F. Ding, X. Liu, X. Gao, X. Li, J. Alloys Compd. 806 (2019) 946 (https://doi.org/10.1016/j.jallcom.2019.07.225)

Y. Li, H. Li, X. Lu, X. Yu, M. Kong, X. Duan, G. Qin, Y. Zhao, Z. Wang, D. D. Dionysiou, J. Colloid Interface Sci. 596 (2021) 384 (https://doi.org/10.1016/j.jcis.2021.03.140)

X. Chen, D. H. Kuo, D. Lu, Chem. Eng. J. 295 (2016) 192 (http://dx.doi.org/10.1016/j.cej.2016.03.047)

A. Kalijadis, J. Ðorđević, T. Trtić-Petrović, M. Vukčević, M. Popović, V. Maksimović, Z. Rakočević, Z. Laušević, Carbon 95 (2015) 42 (http://dx.doi.org/10.1016/j.carbon.2015.08.016)

N. Hellgren, R.T. Haasch, S. Schmidt, L. Hultman, I. Petrov, Carbon 108 (2016) 242 (http://dx.doi.org/10.1016/j.carbon.2016.07.017)

K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603 (https://doi.org/10.1351/pac198557040603)

S. Lowell, J.E. Shields, M.A. Thomas, M.Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht, 2004 (https://doi.org/10.1007/978-1-4020-2303-3)

A. Kalijadis, N. Gavrilov, B. Jokić, M. Gilić, A. Krstić, I. Pašti, B. Babić, Mater. Chem. Phys. 239 (2020) 122120 (https://doi.org/10.1016/j.matchemphys.2019.122120)

E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, Catal. Today 252 (2015) 128 (http://dx.doi.org/10.1016/j.cattod.2014.09.010)

A.D. Paola, M. Bellardita, L. Palmisano, Catalysts 3 (2013) 36 (http://doi:10.3390/catal3010036)

G. Dai, S. Liu, Y. Liang, H. Liu, Z. Zhong, J. Mol. Catal., A 368–369 (2013) 38 (http://dx.doi.org/10.1016/j.molcata.2012.11.014).

Most read articles by the same author(s)