Influence of boron doping on characteristics of glucose-based hydrothermal carbons Scientific paper
Main Article Content
Abstract
In this study, the influence of boron doping on structural and surface properties of carbon material synthesized by a hydrothermal method was investigated, and the obtained results were compared with the previously published influence that boron has on characteristics of carbonized boron-doped hydrothermal carbons (CHTCB). Hydrothermal carbons doped with boron (HTCB) were obtained by the hydrothermal synthesis of glucose solutions with different nominal concentrations of boric acid. It was found that glucose based hydrothermal carbon does not have developed porosity, and the presence of boron in their structure has insignificant influence on it. On the contrary, additional carbonization increases the specific surface area of the undoped sample, while an increase in boron content drastically decreases the specific surface area. Boron doping leads to a decrease in the amount of surface oxygen groups, for both, hydrothermally synthesized and additionally carbonized materials. Raman analysis showed that the boron content does not affect a structural arrangement of the HTCB samples, and Raman structural parameters show a higher degree of disorder, compared to the CHTCB samples. Comparison of structural and surface characteristics of hydrothermal carbons and carbonized materials contributes to the study of the so far, insufficiently clarified influence that boron incorporation has on the material characteristics.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-9/2021-14/ /200135, 451-03-9/2021-14/200287 and 451-03-9/2021-14/200017
References
M. W. Moon, H. Y. Kim, A. Wang, A. Vaziri, J. Nanomater. 2015 (2015) 916834 (http://dx.doi.org/10.1155/2015/916834)
A. Hirsch, The era of carbon allotropes, Nat. Mater. 9 (2010) 868 (https://doi.org/10.1038/nmat2885)
M. M. Titirici, M. Antonietti, Chem. Soc. Rev. 39 (2010) 103 (https://doi.org/10.1039/b819318p)
Y. Wang, L. Qiu, M. Zhu, G. Sun, T. Zhang, K Kang, Sci. Rep. 9 (2019) 5535 (https://doi.org/10.1038/s41598-019-38849-4)
P. Zhu, J. Liu, J. Ma, L. Li, X. Zhang, J. Biobased. Mater. Bio. 15 (2021) 97 (https://doi.org/10.1166/jbmb.2021.2030)
C. Falco, F. Perez Caballero, F. Babonneau, C. Gervais, G. Laurent, M. M. Titirici, N. Baccile, Langmuir 27 (2011) 14460 (https://doi.org/10.1021/la202361p)
M. M. Titirici, A. Thomas, M. Antonietti, New J. Chem. 31 (2007) 787 (https://doi.org/10.1039/b616045j)
X. Zhu, Y. Liu, F. Qian, S. Zhang, J. Chen, Energy Fuels 29 (2015) 5222 (https://doi.org/10.1021/acs.energyfuels.5b00512)
X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004) 597 (https://doi.org/10.1002/anie.200352386)
Y. Z. Jin, C. Gao, W. Kuang Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C. Y. Lee, S. Acquah, H. Kroto, D. R. M. Walton, Carbon 43 (2005) 1944 (https://doi.org/10.1016/j.carbon.2005.03.002)
S. A. Nicolae, H. Au, P. Modugno, H. Luo, A. E. Szego, M. Qiao, L. Li, W. Yin, H. J. Heeres, N. Berge, M. M. Titirici, Green Chem. 22 (2020) 4747 (https://doi.org/10.1039/d0gc00998a)
A. Kalijadis, N. Gavrilov, B. Jokić, M. Gilić, A. Krstić, I. Pašti, B. Babić, Mater. Chem. Phys. 239 (2020) 122120 (https://doi.org/10.1016/j.matchemphys.2019.122120)
M. M. Titirici, R. J. White, C. Falcoa, M. Sevilla, Energy Environ. Sci. 5 (2012) 6796 (https://doi.org/10.1039/c2ee21166a)
Y. J. Lee, Y. Uchiyama, Lj. R. Radovic, Carbon 42 (2004) 2233 (https://doi.org/10.1016/j.carbon.2004.04.030)
X. Wu, Lj. R. Radovic, Carbon 43 (2005) 1768 (https://doi.org/10.1016/j.carbon.2005.02.029)
Y. J. Leea, H. J. Joo, Lj. R. Radovic, Carbon 41 (2003) 2591 (https://doi.org/10.1016/S0008-6223(03)00372-5)
J. S. Đorđević, A. M. Kalijadis, K. R. Kumrić, Z. M. Jovanović, Z. V. Laušević, T. M. Trtić-
-Petrović, Cent. Eur. J. Chem. 10 (2012) 1271 (https://doi.org/10.2478/s11532-012-0042-1)
S. Marinkovic, in Chemistry and physics of carbon, P. A. Thrower, Ed., Marcel Dekker Inc., New York, 1984., p. 1
Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Q. Chen, Q. Meng, Electrochem. Commun. 9 (2007) 596 (https://doi.org/10.1016/j.elecom.2006.10.028)
A. Kalijadis, Z. Jovanović, M. Laušević, Z. Laušević, Carbon 49 (2011) 2671 (https://doi.org/10.1016/j.carbon.2011.02.054)
A. Kalijadis, Z. Jovanović, I. Cvijović-Alagić, Z. Laušević, Nucl. Instrum. Methods, B 316 (2013) 17 (http://dx.doi.org/10.1016/j.nimb.2013.08.030)
A. Kalijadis, J. Ðorđević, T. Trtić-Petrović, M. Vukčević, M. Popović, V. Maksimović, Z. Rakočević, Z. Laušević, Carbon 95 (2015) 42 (http://dx.doi.org/10.1016/j.carbon.2015.08.016)
C. Falco, N. Baccile, M. M. Titirici, Green Chem. 13 (2011) 3273 (http://dx.doi.org/10.1039/c1gc15742f)
J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. M. Titirici, C. Fühner, O. Bens, J. Kern, K. H. Emmerich, Biofuels 2 (2011) 89 (http://dx.doi.org/10.4155/bfs.10.81)
A. D. Roberts, X. Li, H. Zhang, Chem. Soc. Rev. 43 (2014) 4341 (http://dx.doi.org/10.1039/c4cs00071d
P. Zhang, Z. A. Qiaoa, S. Dai, Chem. Commun. 51 (2015) 9246 (http://dx.doi.org/10.1039/c5cc01759a)
B. C. Lippens, B. G. Linsen, J. H. de Boer, J. Catal. 3 (1964) 32 (https://doi.org/10.1016/0021-9517(64)90089-2)
A. M. Kalijadis, M. M. Vukčević, Z. M. Jovanović, Z. V. Laušević, M. D. Laušević, J. Serb. Chem. Soc. 76 (2011) 757 (http://dx.doi.org/10.2298/JSC091224056K)
M. M. Titirici, in Novel Carbon Adsorbents, J. M. D. Tascón, Ed., Elsevier, Oxford, 2012, p. 351 (http://dx.doi.org/10.1016/B978-0-08-097744-7.00012-0)
A. C. Ferrari, J. Robertson, Phys. Rev., B 61 (2000) 14095 (https://doi.org/10.1103/PhysRevB.61.14095)
S. Urbonaite, L. Halldahl, G. Svensson, Carbon 46 (2008) 1942 (https://doi.org/10.1016/j.carbon.2008.08.004)
Z. Wang, H. Ogata, G. J. Hong Melvin, M. Obata, S. Morimoto, J. Ortiz-Medina, R. Cruz-Silva, M. Fujishige, K. Takeuchi, H. Muramatsu, T. Y. Kim, Y. A. Kim, T. Hayashi, M. Terrones, Y. Hashimoto, M. Endo, Carbon 121 (2017) 423 (http://dx.doi.org/10.1016/j.carbon.2017.06.003)
H. Fujimoto, Carbon 41 (2003) 1585 (http://dx.doi.org/10.1016/S0008-6223(03)00116-7)
Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo, Carbon 45 (2007) 1686 (http://dx.doi.org/10.1016/j.carbon.2007.03.038)
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603 (https://doi.org/10.1351/pac198557040603)
S. E. Elaigwu, G. M. Greenway, Int. J. Ind. Chem. 7 (2016) 449 (http://dx.doi.org/10.1007/s40090-016-0081-0)
M. M. Titirici, M. Antonietti, N. Baccile, Green Chem. 10 (2008) 1204 (http://dx.doi.org/10.1039/b807009a)
M. Sevilla, A. B. Fuertes, Chem. Eur. J. 15 (2009) 4195 (http://dx.doi.org/10.1002/chem.200802097)
S. Karthikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, G. Sekaran, J. Ind. Eng. Chem. 21 (2015) 942 (https://doi.org/10.1016/j.jiec.2014.04.036)
S. Kubo, I. Tan, R. J. White, M. Antonietti, M. M. Titirici, Chem. Mater. 22 (2010) 6590 (http://dx.doi.org/10.1021/cm102556h)
Y. Gao, X. Wang, J. Wang, X. Li, J. Cheng, H. Yang, H. Chen, Energy 58 (2013) 376 (http://dx.doi.org/10.1016/j.energy.2013.06.023)
Z. Zhang, K. Wang, J. D. Atkinson, X. Yan, X. Li, M. J. Rood, Z. Yan, J. Hazard. Mater. 229–230 (2012) 183 (http://dx.doi.org/10.1016/j.jhazmat.2012.05.094)
M. Zbair, M. Bottlinger, K. Ainassaari, S. Ojala, O. Stein, R. L. Keiski, M. Bensitel, R. Brahmi, Waste Biomass Valor. 11 (2020) 1565 (https://doi.org/10.1007/s12649-018-00554-0)
Lj. R. Radovic, M. Karra, K. Skokova, P. A. Thrower, Carbon 36 (1998) 1841 (https://doi.org/10.1016/S0008-6223(98)00156-0).