Reactions of 2-acetylpyridine-aminoguanidine with Cu(II) under different reaction conditions Scientific paper

Main Article Content

Marijana Kostić
https://orcid.org/0009-0005-7967-2073
Nikola Radnović
https://orcid.org/0000-0002-5675-9003
Marko Rodić
https://orcid.org/0000-0002-4471-8001
Berta Barta Holló
https://orcid.org/0000-0002-5786-442X
Ljiljana Vojinović-Ješić
Mirjana Radanović
https://orcid.org/0000-0001-6675-9763

Abstract

Aminoguanidine derivatives are the focus of research because of their various biological activities, such as antiviral, antibacterial, analgesic, anti­oxid­ant and anticancer. Their complexes with different metals are also examined and many of them show significant biological activity, too. Besides, some of the complexes show good photoluminescent properties and are used for the preparation of photoelectronic devices. Therefore, the synthesis, physico­chem­ical, structural and thermal characterization of the complexes of 2-acetylpyrid­ine-aminoguanidine (L) with copper (II) are described here. Under different reaction conditions, Cu(II) with L gives three complexes of different compo­sitions. By varying the strength of basicity of the deprotonating agent used, it was proven here that the Schiff base given here could be coordinated in neutral or monoanionic form. In the presence of pyridine, a coordination polymer is obtained, while in the presence of ammonia/lithium acetate two different monomeric complexes were crystallised. Their physicochemical and thermal properties, as well as molecular and crystal structure, are determined.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Kostić, N. Radnović, M. Rodić, B. Barta Holló, L. Vojinović-Ješić, and M. Radanović, “Reactions of 2-acetylpyridine-aminoguanidine with Cu(II) under different reaction conditions: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1265–1278, Dec. 2023.
Section
Theme issue honoring Professor Vukadin Leovac's 80th birthday

Funding data

References

O. Dömötör, N. V. May, G. T. Gál, G. Spengler, A. Dobrova, V. B. Arion, É. A. Enyedy, Molecules 27 (2022) 2044 (https://doi.org/10.3390/MOLECULES27072044/S1)

J. Vojtaššák, J. Čársky, L. Danišovič, D. Böhmer, M. Blaško, T. Braxatorisová, Toxicol. in Vitro 20 (2006) 868 (https://doi.org/10.1016/j.tiv.2005.12.009)

C. Watala, M. Dobaczewski, P. Kazmierczak, J. Gebicki, M. Nocun, I. Zitnanova, O. Ulicna, Z. Durackova, I. Waczulíková, J. Carsky, S. Chlopicki, Vascul. Pharmacol. 51 (2009) 275 (https://doi.org/10.1016/j.vph.2009.07.002)

Yu. M. Chumakov, V. I. Tsapkov, G. Bocelli, B. Ya. Antosyak, S. G. Shova, A. P. Gulea, Crystallogr. Rep. 51 (2006) 60 (https://doi.org/10.1134/S1063774506010123)

M. S. More, P. G. Joshi, Y. K. Mishra, P. K. Khanna, Mater. Today Chem. 14 (2019) 100195 (https://doi.org/10.1016/j.mtchem.2019.100195)

C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A. S. Darwish, T. Lemaoui, R. Verma, Y. Benguerba, Inorg. Chem. Commun. 150 (2023) 110451 (https://doi.org/10.1016/j.inoche.2023.110451)

S. S. Chourasiya, D. Kathuria, S. S. Nikam, A. Ramakrishnan, S. Khullar, S. K. Mandal, A. K. Chakraborti, P. V. Bharatam, J. Org. Chem. 81 (2016) 7574 (https://doi.org/10.1021/acs.joc.6b01258)

M. G. Jelić, D. G. Georgiadou, M. M. Radanović, N. Ž. Romčević, K. P. Giannakopoulos, V. M. Leovac, L. F. Nađ, L. S. Vojinović-Ješić, Opt. Quantum Electron. 48 (2016) 276 (https://doi.org/10.1007/s11082-016-0547-5)

V. M. Leovac, M. D. Joksović, V. Divjaković, L. S. Jovanović, Ž. Šaranović, A. Pevec, J. Inorg. Biochem. 101 (2007) 1094 (https://doi.org/10.1016/j.jinorgbio.2007.04.004)

L. S. Vojinović-Ješić, M. M. Radanović, M. V. Rodić, V. Živković-Radovanović, L. S. Jovanović, V. M. Leovac, Polyhedron 117 (2016) 526 (https://doi.org/10.1016/J.POLY.2016.06.032)

M. M. Radanović, M. V. Rodić, L. S. Vojinović-Ješić, S. Armaković, S. J. Armaković, V. M. Leovac, Inorg. Chim. Acta 473 (2018) 160 (https://doi.org/10.1016/J.ICA.2017.12.038)

M. Radanovic, S. Novakovic, M. Rodic, L. Vojinovic-Jesic, C. Janiak, V. Leovac, J. Serb. Chem. Soc. 87 (2022) 1259 (https://doi.org/10.2298/JSC220613072R)

M. M. Radanović, L. S. Vojinović-Ješić, M. G. Jelić, E. Sakellis, B. Barta Holló, V. M. Leovac, M. V. Rodić, Inorganics (Basel) 10 (2022) 147 (https://doi.org/10.3390/inorganics10100147)

M. M. Radanović, M. V. Rodić, L. S. Vojinović-Ješić, S. Armaković, S. J. Armaković, V. M. Leovac, Inorg. Chim. Acta 473 (2018) 160 (https://doi.org/10.1016/j.ica.2017.12.038)

G. M. Sheldrick, Acta Crystallogr. A Found. Adv. 71 (2015) 3 (https://doi.org/10.1107/S2053273314026370)

G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

A. L. Spek, Acta Crystallogr., D 65 (2009) 148 (https://doi.org/10.1107/S090744490804362X)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)

I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. S. Momerwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris, A. G. Orpen, J. Chem. Inf. Comput. Sci. 44 (2004) 2133 (https://doi.org/10.1021/CI049780B)

C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, Urn:Issn:1600-5767 53 (2020) 226 (https://doi.org/10.1107/S1600576719014092)

K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds. Part B, Applications in coordination, organometallic, and bioinorganic chemistry, Wiley, New York, 2009 (ISBN 978-0-471-74339-2)

A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 0 (1984) 1349 (https://doi.org/10.1039/DT9840001349)

L. Yang, D. R. Powell, R. P. Houser, J. Chem. Soc., Dalton Trans. (2007) 955 (https://doi.org/10.1039/b617136b)

NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/ (accessed June 30, 2023).

Most read articles by the same author(s)