Introducing a novel crystal form of pyruvic acid thiosemicarbazone and its sodium salt Scientific paper

Main Article Content

Svetlana Belošević
https://orcid.org/0000-0003-3555-054X
Sladjana Novakovic
https://orcid.org/0000-0002-8737-5870
Marko Rodić
https://orcid.org/0000-0002-4471-8001
Vukadin Leovac
https://orcid.org/0000-0003-3551-6034
LJiljana Vojinović-Ješić
https://orcid.org/0000-0002-8618-7819
Goran Bogdanović
Mirjana Radanović
https://orcid.org/0000-0001-6675-9763

Abstract

The reaction of thiosemicarbazide and sodium pyruvate has been thoroughly studied and the novel crystal form of pyruvic acid thiosemicarbazone (H2pt) and its sodium salt were obtained. Compounds were characterized by IR spectra, melting points, elemental analysis and conductometric measurements, as well as single-crystal X-ray analysis. A detailed comparative analysis of crystal structures of these compounds is given, as well as comparison with some of the earlier known complexes containing H2pt. The two novel crystal structures exhibit notably different hydrogen bonding patterns, mutually and in comparison with previously reported crystal form of H2pt. All crystal structures are stabilized by extensive network of N–H...O, O–H...O and N–H...S hydrogen bonds. The cyclic hydrogen bonding motif involving the thioureido moieties of the ligand is the only one which repeats in each structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Belošević, “Introducing a novel crystal form of pyruvic acid thiosemicarbazone and its sodium salt: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 7-8, pp. 1011–1023, Aug. 2024.
Section
Inorganic Chemistry

Funding data

References

A. Gómez Quiroga, C. Navarro Ranninger, Coord. Chem. Rev. 248 (2004) 119 (https://doi.org/10.1016/j.cct.2003.11.004)

G. L. Parrilha, R. G. dos Santos, H. Beraldo, Coord. Chem. Rev. 458 (2022) 214418 (https://doi.org/10.1016/j.ccr.2022.214418)

H. Beraldo, D. Gambino, Mini-Rev. Med. Chem. 4 (2004) 31 (https://doi.org/10.2174/1389557043487484)

D.S. Kalinowski D. R.Richardson, Pharmacol. Rev. 57 (2005) 547 (https://doi.org/10.1124/pr.57.4.2)

A. Mushtaq, P. Wu, M. M. Naseer, Pharmacol. Ther. 254 (2024) 108579 (https://doi.org/10.1016/j.pharmthera.2023.108579)

O. Özbek, C. Berkel, Polyhedron 238 (2023) 116426 (https://doi.org/10.1016/j.poly.2023.116426)

L. Feng, W. Shi, J. Ma, Y. Chen, F. Kui, Y. Hui, Z. Xie, Sens. Actuators, B 237 (2016) 563 (https://doi.org/10.1016/j.snb.2016.06.129)

R. Basri, N. Ahmed, M. Khalid, M. Usman Khan, M. Abdullah, A. Syed, A. M. Elgorban, S. S.Al-Rejaie, A. A. C. Braga, Z. Shafq, Sci. Rep. 12 (2022) 4927 (https://doi.org/10.1038/s41598-022-08860-3)

E. Khamis, M. A. Ameer, N. M. AlAndis, G. Al-Senani, Corrosion 56 (2000) 127 (https://doi.org/10.5006/1.3280528)

Q. A. Jawad, D. S. Zinad, R. D. Salim,A. A Al-Amiery,T. S. Gaaz,M. S. Takriff, A. A. H. Kadhum, Coatings 9 (2019) 729 (https://doi.org/10.3390/coatings9110729)

T. S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977 (https://doi.org/10.1016/j.ccr.2008.07.004)

J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197 (https://doi.org/10.1016/S0010-8545(00)00363-5)

D. X. West, S. B. Padhye, P. B. Sonawane, Struct. Bond. 76 (1991) 1 (https://doi.org/10.1007/3-540-53499-7_1)

J. Haribabu, K. Jeyalakshmi, Y. Arun, N. S. P. Bhuvanesh, P. T. Perumal, R. Karvembu, RSC Adv. 5 (2015) 46031 (https://doi.org/10.1039/C5RA04498G)

L. R. P. de Siqueira, P. A. T. de Moraes Gomes, L. P. de Lima Ferreira, M. J. B. de Melo Rêgo, A. C. L. Leite, Eur. J. Med. Chem. 170 (2019) 237 (https://doi.org/10.1016/j.ejmech.2019.03.024)

H. Dong, J. Liu, X. Liu, Y. Yu, S. Cao, Bioorg. Chem. 75 (2017) 106 (https://doi.org/10.1016/j.bioorg.2017.07.002)

J. Wiecek, V. Dokorou, Z. Ciunik, D. Kovala-Demertzi, Polyhedron 28 (2009) 3298 (https://doi.org/10.1016/j.poly.2009.05.012)

M. B. Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, S. Pinelli, J. Inorg. Bioch. 87 (2001) 137 (https://doi.org/10.1016/S0162-0134(01)00321-X)

I. Graur,T. Bespalova, V. Graur, V. Tsapkov, O. Garbuz, E. Melnic, P. Bourosh, A. Gulea, J. Chem. Res. 47 (2023) 6 (https://doi.org/10.1177/17475198231216422)

T.A. Yousef, G.A. El-Reash, O.A. El-Gammal, R. A. Bedier. J Mol Struct. 1035 (2013) 307 (https://doi.org/10.1016/j.molstruc.2012.10.058)

N. I. Dodoff, D. Kovala-Demertzi, M. Kubiak, J. Kuduk-Jaworska, A. Kochel, G. A. Gorneva, Z. Naturforsch., B 61 (2006) 1110 (https://doi.org/10.1515/znb-2006-0909)

B. Ya.Antosyak, V. N. Biyushkin, L. F. Chapurina, T. I. Malinovsky, Dokl. Akad. Nauk SSSR 327 (1992) 219

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Cryst., B 72 (2016) 171. (https://dx.doi.org/10.1107/S2052520616003954)

Rigaku Oxford Diffraction, CrysAlisPro Software system, version 1.171.42, Rigaku Corporation, Wroclaw, 2022

G. M. Sheldrick, Acta Cryst., C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. Galek, P. McCabe, E. Pidcock, P. A. Wood, J. Appl. Cryst. 53 (2020) 226 (https://doi.org/10.1107/S1600576719014092)

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Cryst. 54 (2021) 1006 (https://doi.org/10.1107/S1600576721002910)

G. L. Sawhney, J. S. Baijal, S. Chandra, K. B. Pandeya, Acta Chim. Acad. Sci. Hung. 108 (1981) 325

M. D. Timken, S. R. Wilson, D. N. Hendrickson, Inorg. Chem. 24 (1985) 3450 (https://dx.doi.org/10.1021/ic00215a030)

M. Belicchi Ferrari, Giovanna Gasparri Fava, G. Pelosi, P. Tarasconi, Polyhedron 19 (2000) 1895 (https://doi.org/10.1016/S0277-5387(00)00454-X)

M C Etter, J C MacDonald, J Bernstein, Acta Cryst., B 46 (1990) 256 (https://doi.org/10.1107/S0108768189012929)

S. B. Novaković, B. Fraisse, G. A. Bogdanović, A. Spasojevic-de Biré, Cryst. Growth Des. 17 (2007) 2993 (https://doi.org/10.1021/cg060497).

Most read articles by the same author(s)