Removal of lead and cadmium from aqueous solution using octacalcium phosphate as an adsorbent Scientific paper
Main Article Content
Abstract
Octacalcium phosphate (OCP) is a material from the calcium phosphate group with a crystal structure similar to hydroxyapatite. The removal process of lead and cadmium in aqueous solution using octacalcium phosphate material was investigated. OCP material was synthesized by the solution precipitation method. The structural and phase properties of OCP before and after the removal process were determined by the X-ray diffraction (XRD) method. Microstructural and semi-quantitative analysis of the material was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS). Characteristic bands and functional group determination were revealed using the Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). As target pollutants, Cd(II) and Pb(II) were chosen in adsorption experiments. Results show that OCP in the first 10 min has a very fast removal rate for Pb(II); the equilibrium state was reached after 10 min with more than 98 % adsorption efficiency. Results for Cd(II), results showed the same removal rate but somewhat lower adsorption efficiency, amounted to approximately 63 %.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-1/2023-03/17
References
T. Yokoi, M. Kamitakahara, C. Ohtsuki, Dalton Trans. 44 (2015) 7943 (https://doi.org/10.1039/C4DT03943B)
R. Hamai, S. Sakai, Y. Shiwaku, T. Anada, K. Tsuchiya, T. Ishimoto, T. Nakano, О. Suzuki, Appl. Mater. Today 26 (2022) 101279 (https://doi.org/10.1016/j.apmt.2021.101279)
O. Suzuki, R. Hamai, S. Sakai, Acta Biomater. 158 (2023) 1 (https://doi.org/10.1016/j.actbio.2022.12.046)
S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41 (2002), 3130 (https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1)
A. Idini, E. Dore, D. Fancello, F. Frau, Heliyon 5 (2019) e02288 (https://doi.org/10.1016/j.heliyon.2019.e02288)
I. Yamada, M. Tagaya, Colloid Interface Sci. Commun. 30 (2019) 100182 (https://doi.org/10.1016/j.colcom.2019.100182)
Z. Jianhu, S. Jiacai, Y. Xiaojun, S. Yiping, J. Mater. 55 (2020) 7502 (https://doi.org/10.1007/s10853-020-04539-0)
W.E. Brown, M. Mathew, M.S. Tung, Prog. Cryst. Growth Charact. 4 (1981) 59 (https://doi.org/10.1016/0146-3535(81)90048-4)
T. Yokoi, S. Machida, Y. Sugahara, M. Hashimoto, S. Kitaoka, Chem. Commun. 53 (2017), 6524 (https://doi.org/10.1039/C7CC01169E)
R. O’Sullivan, D. Kelly, in Octacalcium Phosphate Biomaterials, O. Suzuki, G. Insley, Eds., Woodhead Publishing, Sawston, 2020, pp. 147–176 (https://doi.org/10.1016/B978-0-08-102511-6.00007-8)
M.J. Arellano-Jiménez, R. García-García, J. Reyes-Gasga, J. Phys. Chem. Solids 70 (2009) 390 (https://doi.org/10.1016/j.jpcs.2008.11.001)
S. Mandel, A.C. Tas, Mater. Sci. Eng., C 30 (2010) 245 (https://doi.org/10.1016/j.msec.2009.10.009)
O. Suzuki, Acta Biomater. 6 (2010) 3379 (https://doi.org/10.1016/j.msec.2009.10.009)
P. Sharma, S. Sangwan, S. Mehta, in Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management, A. Husen, Ed., Academic Press, Cambridge, MA, 2023, pp. 71–97 (https://doi.org/10.1016/B978-0-323-91933-3.00008-8)
A.L. Patterson, Phys. Rev. 56 (1939) 978 (https://doi.org/10.1103/PhysRev.56.978)
W.K. Nolze, J. Appl. Cryst. 29 (1996) 301 (https://doi.org/10.1107/S0021889895014920)
A. Krstić, A. Lolić, M. Mirković, J. Kovač, T. M. Arsić, B. Babić, A. Kalijadis, J. Environ. Chem. Eng. 10 (2022) 108998 (https://doi.org/10.1016/j.jece.2022.108998)
J. Zhu, J. Shu, X. Yue, Y. Su, J. Mater. Sci. 55 (2020) 7502 (https://doi.org/10.1007/s10853-020-04539-0)
T. Miyazaki, Y. Mater. Lett.X 15 (2022) 100151 (https://doi.org/10.1016/j.mlblux.2022.100151)
X. Zhao, S. Jiang, J. Rao, J. Zhou, Z. Li, J. Yang, K. Yan, H. Shi, Mater. Lett. 328 (2022) 133137 (https://doi.org/10.1016/j.matlet.2022.133137)
M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzadi, N.A.A. Osman, Ceram. Int. 40 (2014) 12439 (https://doi.org/10.1016/j.ceramint.2014.04.095)
K. Onuma, M.M. Saito, Y. Yamakoshi, M. Iijima, Y. Sogo, K. Momma, Acta Biomater. 125 (2021) 333 (https://doi.org/10.1016/j.actbio.2021.02.024)
H.B. Lu, C.L. Ma, H. Cui, L.F. Zhou, R.Z. Wang, F.Z. Cui, J. Cryst. Growth 155 (1995) 120 (https://doi.org/10.1016/0022-0248(95)00229-4)
W.H. Qi, M.P. Wang, Y.C. Su, J. Mater. Sci. Lett. 21 (2002) 877 (https://doi.org/10.1023/A:1015778729898)
M. Ya Gamarnik, Phys. Status Solidi, B 178 (1993) 59 (https://doi.org/10.1002/pssb.2221780105)
X. Zhao, S. Jiang, J. Rao, J. Zhou, Z. Li, J. Yang, K. Yan, H. Shi, Mater. Lett. 328 (2022) 133137 (https://doi.org/10.1016/j.matlet.2022.133137)
J. Liu, F.Qiu, Y. Zou, Z. Zhang, A. Wang, Y. Zhang, Ceram. Int. 49 (2023) 20315 (https://doi.org/10.1016/j.ceramint.2023.03.155)
A. Ressler, T. Ivanković, I. Ivanišević, M. Cvetnić, M. Antunović, I. Urlić, H. Ivanković, M. Ivanković, Ceram. Int. 49 (2023) 11005 (https://doi.org/10.1016/j.ceramint.2022.11.295)
H. Shi, X. Ye, J. Zhang, T. Wu, T. Yu, C. Zhou, J. Ye, Bioact. Mater. 6 (2021), 1267 (https://doi.org/10.1016/j.bioactmat.2020.10.025)
Y.S. Ho, G. McKay, Process Biochem. 34 (1999) 451 (https://doi.org/10.1016/S0032-9592(98)00112-5)
Y. Sugiura, Y. Makita, J. Cryst. Growth 583 (2022) 126545 (https://doi.org/10.1016/j.jcrysgro.2022.126545).