Removal of lead and cadmium from aqueous solution using octacalcium phosphate as an adsorbent Scientific paper

Main Article Content

Miljana Mirković
https://orcid.org/0000-0003-2335-455X
Ana Kalijadis
https://orcid.org/0000-0002-6897-4691
Ivan Bracanović
https://orcid.org/0000-0002-8526-8633
Aleksandar Krstić
https://orcid.org/0000-0001-7418-6723
Dunja Đukić
https://orcid.org/0009-0001-7863-1596
Vladimir Dodevski
https://orcid.org/0000-0003-1827-8230

Abstract

Octacalcium phosphate (OCP) is a material from the calcium phos­phate group with a crystal structure similar to hydroxyapatite. The removal process of lead and cadmium in aqueous solution using octacalcium phosphate material was investigated. OCP material was synthesized by the solution pre­cipitation method. The structural and phase properties of OCP before and after the removal process were determined by the X-ray diffraction (XRD) method. Microstructural and semi-quantitative analysis of the material was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS). Characteristic bands and functional group determination were revealed using the Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). As target pollutants, Cd(II) and Pb(II) were chosen in adsorption experiments. Results show that OCP in the first 10 min has a very fast removal rate for Pb(II); the equilibrium state was reached after 10 min with more than 98 % adsorption efficiency. Results for Cd(II), results showed the same removal rate but somewhat  lower adsorption efficiency, amounted to approximately 63 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Mirković, A. Kalijadis, I. Bracanović, A. Krstić, D. Đukić, and V. Dodevski, “Removal of lead and cadmium from aqueous solution using octacalcium phosphate as an adsorbent: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 2, pp. 231–244, Mar. 2024.
Section
Materials

Funding data

References

T. Yokoi, M. Kamitakahara, C. Ohtsuki, Dalton Trans. 44 (2015) 7943 (https://doi.org/10.1039/C4DT03943B)

R. Hamai, S. Sakai, Y. Shiwaku, T. Anada, K. Tsuchiya, T. Ishimoto, T. Nakano, О. Suzuki, Appl. Mater. Today 26 (2022) 101279 (https://doi.org/10.1016/j.apmt.2021.101279)

O. Suzuki, R. Hamai, S. Sakai, Acta Biomater. 158 (2023) 1 (https://doi.org/10.1016/j.actbio.2022.12.046)

S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41 (2002), 3130 (https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1)

A. Idini, E. Dore, D. Fancello, F. Frau, Heliyon 5 (2019) e02288 (https://doi.org/10.1016/j.heliyon.2019.e02288)

I. Yamada, M. Tagaya, Colloid Interface Sci. Commun. 30 (2019) 100182 (https://doi.org/10.1016/j.colcom.2019.100182)

Z. Jianhu, S. Jiacai, Y. Xiaojun, S. Yiping, J. Mater. 55 (2020) 7502 (https://doi.org/10.1007/s10853-020-04539-0)

W.E. Brown, M. Mathew, M.S. Tung, Prog. Cryst. Growth Charact. 4 (1981) 59 (https://doi.org/10.1016/0146-3535(81)90048-4)

T. Yokoi, S. Machida, Y. Sugahara, M. Hashimoto, S. Kitaoka, Chem. Commun. 53 (2017), 6524 (https://doi.org/10.1039/C7CC01169E)

R. O’Sullivan, D. Kelly, in Octacalcium Phosphate Biomaterials, O. Suzuki, G. Insley, Eds., Woodhead Publishing, Sawston, 2020, pp. 147–176 (https://doi.org/10.1016/B978-0-08-102511-6.00007-8)

M.J. Arellano-Jiménez, R. García-García, J. Reyes-Gasga, J. Phys. Chem. Solids 70 (2009) 390 (https://doi.org/10.1016/j.jpcs.2008.11.001)

S. Mandel, A.C. Tas, Mater. Sci. Eng., C 30 (2010) 245 (https://doi.org/10.1016/j.msec.2009.10.009)

O. Suzuki, Acta Biomater. 6 (2010) 3379 (https://doi.org/10.1016/j.msec.2009.10.009)

P. Sharma, S. Sangwan, S. Mehta, in Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management, A. Husen, Ed., Academic Press, Cambridge, MA, 2023, pp. 71–97 (https://doi.org/10.1016/B978-0-323-91933-3.00008-8)

A.L. Patterson, Phys. Rev. 56 (1939) 978 (https://doi.org/10.1103/PhysRev.56.978)

W.K. Nolze, J. Appl. Cryst. 29 (1996) 301 (https://doi.org/10.1107/S0021889895014920)

A. Krstić, A. Lolić, M. Mirković, J. Kovač, T. M. Arsić, B. Babić, A. Kalijadis, J. Environ. Chem. Eng. 10 (2022) 108998 (https://doi.org/10.1016/j.jece.2022.108998)

J. Zhu, J. Shu, X. Yue, Y. Su, J. Mater. Sci. 55 (2020) 7502 (https://doi.org/10.1007/s10853-020-04539-0)

T. Miyazaki, Y. Mater. Lett.X 15 (2022) 100151 (https://doi.org/10.1016/j.mlblux.2022.100151)

X. Zhao, S. Jiang, J. Rao, J. Zhou, Z. Li, J. Yang, K. Yan, H. Shi, Mater. Lett. 328 (2022) 133137 (https://doi.org/10.1016/j.matlet.2022.133137)

M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzadi, N.A.A. Osman, Ceram. Int. 40 (2014) 12439 (https://doi.org/10.1016/j.ceramint.2014.04.095)

K. Onuma, M.M. Saito, Y. Yamakoshi, M. Iijima, Y. Sogo, K. Momma, Acta Biomater. 125 (2021) 333 (https://doi.org/10.1016/j.actbio.2021.02.024)

H.B. Lu, C.L. Ma, H. Cui, L.F. Zhou, R.Z. Wang, F.Z. Cui, J. Cryst. Growth 155 (1995) 120 (https://doi.org/10.1016/0022-0248(95)00229-4)

W.H. Qi, M.P. Wang, Y.C. Su, J. Mater. Sci. Lett. 21 (2002) 877 (https://doi.org/10.1023/A:1015778729898)

M. Ya Gamarnik, Phys. Status Solidi, B 178 (1993) 59 (https://doi.org/10.1002/pssb.2221780105)

X. Zhao, S. Jiang, J. Rao, J. Zhou, Z. Li, J. Yang, K. Yan, H. Shi, Mater. Lett. 328 (2022) 133137 (https://doi.org/10.1016/j.matlet.2022.133137)

J. Liu, F.Qiu, Y. Zou, Z. Zhang, A. Wang, Y. Zhang, Ceram. Int. 49 (2023) 20315 (https://doi.org/10.1016/j.ceramint.2023.03.155)

A. Ressler, T. Ivanković, I. Ivanišević, M. Cvetnić, M. Antunović, I. Urlić, H. Ivanković, M. Ivanković, Ceram. Int. 49 (2023) 11005 (https://doi.org/10.1016/j.ceramint.2022.11.295)

H. Shi, X. Ye, J. Zhang, T. Wu, T. Yu, C. Zhou, J. Ye, Bioact. Mater. 6 (2021), 1267 (https://doi.org/10.1016/j.bioactmat.2020.10.025)

Y.S. Ho, G. McKay, Process Biochem. 34 (1999) 451 (https://doi.org/10.1016/S0032-9592(98)00112-5)

Y. Sugiura, Y. Makita, J. Cryst. Growth 583 (2022) 126545 (https://doi.org/10.1016/j.jcrysgro.2022.126545).

Most read articles by the same author(s)