Adsorption analysis of PFOA on activated carbon and ion-exchange resin: A comparative study using four isotherm models Scientific paper

Main Article Content

Kristina Kasalica
https://orcid.org/0000-0001-7731-2043
Natalija Petronijević
Jelena Radulović
https://orcid.org/0000-0003-0141-753X
Latinka Slavković Beškoski
Marija Lješević
https://orcid.org/0000-0002-8164-6043
Bojana Marković
https://orcid.org/0000-0001-7608-8289
Vladimir Beškoski
https://orcid.org/0000-0002-6372-4706

Abstract

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals”, are highly persistent environmental pollutants due to their strong carbon–fluorine bonds. Widely used across industries and consumer products, PFAS have accumulated in the environment, raising concerns about their bio­accumulation, toxicity and mobility. Adsorption, particularly using activated carbon and ion exchange resins, is a suitable technique for PFAS removal from contaminated water. This study evaluates the sorption efficiency of granular and powdered activated carbon and two ion exchange resins to identify the most effective materials for remediation. All tested sorbents showed great per­formance, however Amberlite IRA 402, and powdered activated carbon K/B were the most efficient. Based on the isotherm models used, it is suggested that physisorption is a dominant process, where the multilayer adsorption on a het­erogeneous surface is being favoured.

Downloads

Metrics

PDF views
151
Jan 07 '25Jan 10 '25Jan 13 '25Jan 16 '25Jan 19 '25Jan 22 '25Jan 25 '25Jan 28 '25Jan 31 '25Feb 01 '25Feb 04 '254.0
|

Article Details

How to Cite
[1]
K. Kasalica, “Adsorption analysis of PFOA on activated carbon and ion-exchange resin: A comparative study using four isotherm models: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 12, pp. 1619–1628, Jan. 2025.
Section
In Memoriam Issue Devoted to Prof. Dragan Veselinović

References

Z. Wang, A. M. Buser, I. T. Cousins, S. Demattio, W. Drost, O. Johansson, K. Ohno, G. Patlewicz, A. M. Richard G. W. Walker, G. S. White, E. Leinala, Environ. Sci. Technol. 55 (2021) 15575 (https://doi.org/10.1021/acs.est.1c06896)

L. G. T. Gaines, Am. J. Ind. Med. 66 (2023) 353 (https://doi.org/10.1002/ajim.23362)

I. J. Neuwald, D. Hübner, H. L. Wiegand, V. Valkov, U. Borchers, K. Nödler, M. Scheurer, S. E. Hale, H. P. H. Arp, D. Zahn, Environ. Sci. Technol. 56 (2022) 6380 (https://doi.org/10.1021/acs.est.1c07949)

ECHA, https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accssed 15.11.2024)

I. Ali, M. Asim, T.A. Khan, J. Environ. Manage. 113 (2012) 170 (https://doi.org/10.1016/j.jenvman.2012.08.028)

N. Bolan, B. Sarkar, Y. Yan, Q. Li, H. Wijesekara, K. Kannan, D.C.W. Tsang, M. Schauerte, J. Bosch, H. Noll, Y. S. Ok, K. Scheckel, J. Kumpiene, K. Gobindlal, M. Kah, J. Sperry, M. B. Kirkham, H. Wang, Y. F. Tsang, D. Hou, J. Rinklebe, J. Hazard. Mater. 401 (2021) 123892 (https://doi.org/10.1016/j.jhazmat.2020.123892)

R. Mahinroosta, L. Senevirathna, J. Environ. Manage. 255 (2020) 109896 (https://doi.org/10.1016/j.jenvman.2019.109896)

F. Dixit, R. Dutta, B. Barbeau, P. Berube, M. Mohseni, Chemosphere 272 (2021) 129777 (https://doi.org/10.1016/j.chemosphere.2021.129777)

E. Barth, J. McKernan, D. Bless, K. Dasu, J. Environ. Manage. 296 (2021) 113069 (https://doi.org/10.1016/j.jenvman.2021.113069)

V. Beškoski, M. Lješević, B. Jiménez, J. Muñoz-Arnanz, P. Colomer-Vidal, H. Inui, T. Nakano, in Soil Remediation Science and Technology. The Handbook of Environmental Chemistry, Vol 130, J. J. Ortega-Calvo, F. Coulon, Eds., Springer Nature, Cham, 2024, p.332 (https://doi.org/10.1007/698_2023_1070)

E. E. Jasper, V. O. Ajibola, J.C. Onwuka, Appl. Water. Sci. 10 (2020) 132 (https://doi.org/10.1007/s13201-020-01218-y)

A. Nastasović, B. Marković, Lj. Suručić, A. Onjia, Metals 12 (2022) 814 (https://doi.org/10.3390/met12050814)

M. Shafiq, A. A. Alazba, M. T. Amin, Sustainability 13 (2021) 3785 (https://doi.org/10.3390/su13073785).

Most read articles by the same author(s)