Evolution of humic acids during ex situ bioremediation on a pilot level – an added value of the microbial activity

Aleksandra N. Žerađanin, Jelena Avdalović, Marija Lješević, Olivera Tešić, Srdjan Miletić, Miroslav M. Vrvić, Vladimir Beškoski

Abstract


Environmental pollution is a global problem, while bioremediation technology removes pollutants from the environment using microorganisms. This study aimed to investigate how a bioremediation process affected soil humification. In soil polluted with petroleum and its derivatives that was submitted to bioremediation, besides total petroleum hydrocarbons (TPH) and number of microorganisms, quantitative and qualitative changes of isolated humic acids were determined during the process. Bioremediation of 150 m3 of polluted soil lasted for 150 days. TPH decreased by 86.6 %, while the level of humic acids increased by 26.5 %. The elemental analysis showed the reduction of C and the H/C ratio and the increase of O and the O/C ratio of isolated humic acids during the process. The ratio of absorbances at 465 and 665 nm (E4/E6) also increased. Based on this and the Fourier-transform infrared spectra, it was shown that the humic acids isolated at the end of bioremediation were enriched with oxygen functional groups and aromatic structures. This study provides one of the first insights into the relationship between bioremediation and humification, as well as evidence of how hydrocarbon-degrading microorganisms have a significant influence on changes to humic acid structure during bioremediation.


Keywords


remediation; humification; total petroleum hydrocarbons

Full Text:

PDF (1,254 kB)

References


S. Habib, S. A. Ahmad, W. L. W. Johari, M. Y. A. Shukor, N. A. Yasid, Pertanika J. Sci. Technol. 26 (2018) 1 (http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2026%20(1)%20Jan.%202018/01%20JST-0684-2016-3rdProof.pdf)

A. O. Adeleye, M. E. Nkereuwem, G. I. Omokhudu, A. O. Amoo, G. P. Shiaka, M. B. Yerima, J. Appl. Sci. Environ. Manage. 22 (2018) 157 (https://dx.doi.org/10.4314/jasem.v22i2.1)

H. Baoune, J. D. Aparicio, G. Pucci, A. Ould El Hadj-Khelil, M. A. Polti, J. Soil Sediment. 19 (2019) 2222 (https://doi.org/10.1007/s11368-019-02259-w)

R. E. Correa Pabón, C. R. D. Souza Filho, W. J. Oliviera, Sci. Total Environ. 649 (2019) 1224 (https://doi.org/10.1016/j.scitotenv.2018.08.231)

M. Omrani, G. Spini, E. Puglisi, D. Saidane, Biodegradation 29 (2018) 187 (https://doi.org/10.1007/s10532-018-9823-3)

P. McIntosh, C. P. Schulthess, Y. A. Kuzovkina, K. Guillard, Int. J. Phytoremediat. 19 (2017) 755 (https://doi.org/10.1080/15226514.2017.1284753)

M. Kästner, and A. Miltner, Appl. Microbiol. Biotechnol. 100 (2016) 3433 (https://doi.org/10.1007/s00253-016-7378-y)

S. Amir, A. Jouraiphy, A. Meddich, E. M. Gharous, P. Winterton, M. Hafidi, J. Hazard. Mater. 177 (2010) 524 (https://doi.org/10.1016/j.jhazmat.2009.12.064)

T. Jednak, J. Avdalović, S. Miletić, L. Slavković-Beškoski, D. Stanković, J. Milić, M. Ilić, V. Beškoski, G. Gojgić-Cvijović, M. M. Vrvić, Int. Biodeter. Biodegr. 122 (2017) 47 (http://dx.doi.org/10.1016/j.ibiod.2017.04.009)

J. Wu, Y. Zhao, W. Zhao, T. Yang, X. Zhang, X. Xie, H. Cui, Z. Wei, Bioresource Technol. 226 (2017) 191 (http://dx.doi.org/10.1016/j.biortech.2016.12.031)

I. V. Perminova, K. Hatfield, N. Hertkorn, Use of humic substances to remediate polluted environments: from theory to practice, Springer-Verlag, Berlin/Heidelberg, 2005, p. 3 (ISBN 1-4020-3252-8)

Y. Zhang, D. Yue, X. Wang, W. Song, J. Environ. Sci. 77 (2019) 167 (https://doi.org/10.1016/j.jes.2018.07.002)

S. Salati, G. Papa, F. Adani, Biotechnol. Adv. 29 (2011) 913 (https://doi.org/10.1016/j.biotechadv.2011.07.012)

B. A. G. Melo, F. L. Motta, M. H. A. Santana, Mater. Sci. Eng. C 62 (2016) 967 (http://dx.doi.org/10.1016/j.msec.2015.12.001)

F. L. Motta, B. A. G. Melo, M. H. A. Santana, New Biotechnol. 33 (2016) 773 (http://dx.doi.org/10.1016/j.nbt.2016.07.003)

V. P. Beškoski, G. Gojgić-Cvijović, J. Milić, M. Ilić, S. Miletić, T. Šolević, M. M. Vrvić, Chemosphere 83 (2011) 34 (https://doi.org/10.1016/j.chemosphere.2011.01.020)

ISO 10381-1: Soil Quality – Sampling – Part 1: Guidance on the design of sampling programmes (2002)

C. Löser, H. Seidel, A. Zehnsdorf, U. Stottmeister, Appl. Microbiol. Biotechnol. 49 (1998) 631 (https://doi.org/10.1007/s002530051225)

G. Gojgic-Cvijovic, J. Milic, T. Solevic, V. Beskoski, M. Ilic, L. Djokic, T. Narancic, M. M. Vrvic, Biodegradation 23 (2012) 1 (https://doi.org/10.1007/s10532-011-9481-1)

J. Milić, V. Beškoski, M. Ilić, S. Ali, G. Gojgić-Cvijović, M. M. Vrvic, J. Serb. Chem. Soc. 74 (2009) 455 (http://doi.org/10.2298/JSC0904455M)

C. H. Collins, P. M. Lyne, J. M. Grange, J. O. Falkinham (Eds). Microbiological Methods, eighth edition. Arnold, London, 2004, p. 1 (ISBN 0 340 80896 9)

T. J. Rowbotham, T. Cross, J. Gen. Microbiol. 100 (1977) 231 (https://doi.org/10.1099/00221287-100-2-231)

ISO 16703: Soil quality ⎯ Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography (2004)

DIN EN 14345: Characterization of waste — Determination of hydrocarbon content by gravimetry (2004)

B. Jovančićević, M. Antić, T. Šolević, M. Vrvić, A. Kronimus, J. Schwarzbauer, Environ. Sci. Pollut. R. 12 (2005) 205 (https://doi.org/10.1065/espr2004.12.229)

ISO 5073: Brown coals and lignites — Determination of humic acids (1999)

J. Pajaczkowska, A. Sulkowska, W. Sulkowski, M. Jedrzejczyk, J. Mol. Struct. 651-653 (2003) 141 (https://doi.org/10.1016/S0022-2860(03)00103-0)

X. Li, M. Xing, J. Yang, L. Zhao, X. Dai, J. Hazard. Mater. 261 (2013) 491 ()

V. P. Beškoski, M. Takić, J. Milić, M. Ilić, G. Gojgić-Cvijović, B. Jovančićević, M. M. Vrvić, J. Serb. Chem. Soc. 75 (2010) 1605 (https://doi.org/10.1016/j.jhazmat.2013.07.074)

Jovančićević, M. Antić, I. Pavlović, M. Vrvić, V. Beškoski, A. Kronimus, J. Schwarz-bauer, Water Air Soil Poll. 190 (2008) 299 (https://doi.org/10.1007/s11270-007-9601-z)

Y. Yang, H. Li, J. Li, Fron. Env. Sci. Eng. 8 (2014) 854 (https://doi.org/10.1007/s11783-014-0755-9)

K. Yang, G. Miao, W. Wu, D. Lin, B. Pan, F. Wu, B. Xing, Chemosphere 138 (2015) 657 (http://dx.doi.org/10.1016/j.chemosphere.2015.07.061)




DOI: https://doi.org/10.2298/JSC190916131Z

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)