Bioremediation of river sediment polluted with polychlorinated biphenyls: A laboratory study Scientific paper

Main Article Content

Aleksandra Žerađanin
https://orcid.org/0000-0001-5896-6025
Kristina Joksimović
https://orcid.org/0000-0002-9371-4381
Jelena Avdalović
https://orcid.org/0000-0001-9917-7997
Gordana Gojgić-Cvijović
https://orcid.org/0000-0001-5598-0585
Nakano Takeshi
https://orcid.org/0000-0002-4329-5860
Srđan Miletić
https://orcid.org/0000-0002-7263-2686
Mila Ilić
https://orcid.org/0000-0002-7102-1701
Vladimir Beškoski
https://orcid.org/0000-0002-6372-4706

Abstract

Persistent organic pollutants (POPs) are lipophilic, constant and bio­accumulative toxic compounds. In general, they are considered resistant to bio­logical, photolytic, and chemical degradation with polychlorinated biphenyls (PCBs) belonging to these chemicals. PCBs were never produced in Serbia, but they were imported and mainly used in electrical equipment, transformers, and capacitors. Our study aimed to analyse sequential multi-stage aerobic/anaerobic microbial biodegradation of PCBs present in the river sediment from the area known for long-term pollution with these chemicals. The study with an auto­chthonous natural microbial community (NMC model system) and NMC aug­mented with allochthonous hydrocarbon-degrading (AHD) microorganisms (iso­lated from location contaminated with petroleum products) (NMC-AHD model system) was performed in order to estimate the potential of these microorganisms for possible use in future bioremediation treatment of these sites. The laboratory biodegradation study lasted 70 days, after which an overall >33 % reduction in the concentration of total PCBs was observed. This study confirmed the strong potential of the NMC for the reduction of the level of PCBs in the river sediment under alternating multi-stage aerobic/anaerobic conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Žerađanin, “Bioremediation of river sediment polluted with polychlorinated biphenyls: A laboratory study: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 1, pp. 95–107, Jan. 2022.
Section
In Memoriam Issue Devoted to Prof. Petar Pfendt

References

L. Xu, Y. Teng, Z. G. Li, J. M. Norton, Y. M. Luo, Sci. Total Environ. 408 (2010) 1007 (https://doi.org/10.1016/j.scitotenv.2009.11.031)

M. Matthies, K. Solomon, M. Vighi, A. Gilman, J. V. Tarazona, Environ. Sci.- Proc. Imp. 18 (2016) 1114 (https://doi.org/10.1039/c6em00311g)

A. V. B. Reddya, M. Moniruzzamana, T. M. Aminabhavi, Chem. Eng. J. 358 (2019) 1186 (https://doi.org/10.1016/j.cej.2018.09.205)

R. Villemur, Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 (2013) 20120319 (https://doi.org/10.1098/rstb.2012.0319)

M. Diez, J. Soil Sci. Plant Nut. 10 (2010) 244 (https://doi.org/10.4067/S0718-95162010000100004)

P. I. Nikel, D. Pérez-Pantoja, V. de Lorenzo, Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 (2013) 20120377 (https://doi.org/10.1098/rstb.2012.0377)

F. Khalid, M. Z. Hashmi, N. Jamil, A. Quadir, M. I. Ali, Environ. Sci. Pollut. Res. 28 (2021) 10474 https://doi.org/10.1007/s11356-020-11996-2).

L. Passatore, S. Rossetti, A. A. Juwarkar, A. Massacci, J. Hazard. Mater. 278 (2014) 189 (https://doi.org/10.1016/j.jhazmat.2014.05.051)

P. K. Arora, Microbial Metabolism of Xenobiotic Compounds, Springer, Singapore, 2019, pп. 165–188 (https://doi.org/10.1007/978-981-13-7462-3)

M. Seeger, M. Hernández, V. Méndez, B. Ponce, M. Córdova, M. González, J. Soil Sci. Plant Nut. 10 (2010) 320 (https://doi.org/10.4067/S0718-95162010000100007)

Stockholm Convention on POPs. Text of the Convention, http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx (аccessed 17 December 2021)

M. A Ashraf, Environ. Sci. Pollut. R. 5 (2015) 4223 (https://doi.org/10.1007/s11356-015-5225-9)

EPA Persistent Organic Pollutants: A Global Issue, A Global Response, https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response (аccessed 17 December 2021)

Stockholm convention on POPs. The 12 initial POPs under Stockholm convention, http://www.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx (аccessed 17 December 2021)

D. L. Bedard, K. M. Ritalahti, F. E. Löffler, Appl. Environ. Microb. 73 (2007) 2513 (https://doi.org/10.1128/AEM.02909-06)

J. Wiegel, Q. Wu, FEMS Microbiol. Ecol. 32 (2000) 1 (https://doi.org/10.1111/j.1574-6941.2000.tb00693.x)

NIP-National Implementation Plan for the implementation of the Stockholm Convention, the Ministry of Environment and Spatial Planning of the Republic of Serbia, 2010

V. P. Beškoski, G. Gojgić - Cvijović, J. Milić, M. Ilić, S. Miletić, T. Šolević, M.M. Vrvić, Chemosphere 83 (2011) 34 (https://doi.org/10.1016/j.chemosphere.2011.01.020)

G. Dević, S. Sakan, D. Đorđević, Environ. Sci. Pollut. Res. 23 (2016) 282 (https://doi.org/10.1007/s11356-015-5808-5)

ISO 16703: Soil Quality – Determination of Content of Hydrocarbon in the Range C10 to C40 by Gas Chromatography, 2004

DIN EN 14345: Characterization of Waste. Determination of Hydrocarbon Content by Gravimetry, 2004

R. Margesin, F. Schinner, Manual for soil analysis-monitoring and assessing soil bioremediation, Springer-Verlag, Berlin, 2005, pp. 47–95 (https://doi.org/10.1007/3-540-28904-6)

M. Pansu, J. Gautheyrou, Handbook of soil analysis- mineralogical, organic and inorganic methods, Springer-Verlag, Berlin, 2006 (https://doi.org/10.1007/978-3-540-31211-6)

D. Leys, L. Adrian, H. Smidt, Philos. Trans. R. Soc., B 368 (2013) 20120316 (https://doi.org/10.1098/rstb.2012.0316)

C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach. Manual of Environmental Microbiology, 2nd ed., ASM Press, Washington DC, 2002, p. 934 (ISBN 978-1555811990)

G. D. Gojgic-Cvijovic, J. S. Milic, T. M. Solevic, V. P. Beskoski, M. V. Ilic, L. S. Djokic, T. M. Narancic, M. M. Vrvic, Biodegradation 23 (2012) 1 (https://doi.org/10.1007/s10532-011-9481-1)

NCBI – The national center for biotechnology information, Nucleotide database, https://www.ncbi.nlm.nih.gov (accessed 17 December 2021)

I. Liska, F. Wagner, M. Sengl, K. Deutsch, J. Slobodnik, Joint Danube Survey 3 — Final Scientific Report, International Commission for the Protection of the Danube River, Vienna, 2015, pp. 249–259 (http://www.danubesurvey.org/jds3/jds3-files/nodes/documents/jds3_final_scientific_report_1.pdf)

C. Tu, Y. Teng, Y. Luo, X. Li, X. Sun, Z. Li, W. Liu, P. Christie, J. Hazard. Mater. 186 (2011) 1438 (https://doi.org/10.1016/j.jhazmat.2010.12.008)

A. C. Alder, M. M. Haggblom, S. R. Oppenhelmer, L.Y. Young, Environ. Sci. Technol. 27 (1993) 530 (https://doi.org/10.1021/es00040a012))

L. Dabrowska, A. Rosinska, Chemosphere 88 (2012) 168 (https://doi.org/10.1016/j.chemosphere.2012.02.073)

R.B. Payne, H.D. May, K.R. Sowers, Environ. Sci. Technol. 45 (2011) 8772 (https://doi.org/10.1021/es201553c)

M. Song, C. Luo, F. Li, L. Jiang, Y. Wang, D. Zhang, G. Zhang, Sci. Total. Environ. 502 (2015) 426 (https://doi.org/10.1016/j.scitotenv.2014.09.045).

Most read articles by the same author(s)