Adsorption analysis of PFOA on activated carbon and ion-exchange resin: A comparative study using four isotherm models

Main Article Content

Kristina Kasalica
https://orcid.org/0000-0001-7731-2043
Natalija Petronijević
Jelena Radulović
https://orcid.org/0000-0003-0141-753X
Latinka Slavković Beškoski
Marija Lješević
https://orcid.org/0000-0002-8164-6043
Bojana Marković
https://orcid.org/0000-0001-7608-8289
Vladimir Beškoski
https://orcid.org/0000-0002-6372-4706

Abstract

Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals", are highly persistent environmental pollutants due to their strong carbon-fluorine bonds. Widely used across industries and consumer products, PFAS have accumulated in the environment, raising concerns about their bioaccumulation, toxicity, and mobility. Adsorption, particularly using activated carbon and ion exchange resins, is a suitable technique for PFAS removal from contaminated water. This study evaluates the sorption efficiency of granular and powdered activated carbon and two ion exchange resins to identify the most effective materials for remediation. All tested sorbents showed great performance, however Amberlite IRA 402, and powdered activated carbon K/B were the most efficient. Based on the isotherm models used, it is suggested that physisorption is a dominant process, where the multilayer adsorption on a heterogeneous surface is being favoured.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
K. Kasalica, “Adsorption analysis of PFOA on activated carbon and ion-exchange resin: A comparative study using four isotherm models”, J. Serb. Chem. Soc., Dec. 2024.
Section
In Memoriam Issue Devoted to Prof. Dragan Veselinović

References

Z. Wang, A. M. Buser, I. T. Cousins, S. Demattio, W. Drost, O. Johansson, K. Ohno, G. Patlewicz, A. M. Richard G. W. Walker, G. S. White, E. Leinala, Environ. Sci. Technol. 55 (2021) 15575 (https://doi.org/10.1021/acs.est.1c06896)

L. G. T. Gaines, Am. J. Ind. Med. 66 (2023) 353 (https://doi.org/10.1002/ajim.23362)

I. J. Neuwald, D. Hübner, H. L. Wiegand, V. Valkov, U. Borchers, K. Nödler, M. Scheurer, S. E. Hale, H. P. H. Arp, D. Zahn, Environ. Sci. Technol. 56 (2022) 6380 (https://doi.org/10.1021/acs.est.1c07949)

ECHA, https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas, 15.11.2024

I. Ali, M. Asim, T.A. Khan, J. Environ. Manag. 113 (2012) 170 (https://doi.org/10.1016/j.jenvman.2012.08.028)

N. Bolan, B. Sarkar, Y. Yan, Q. Li, H. Wijesekara, K. Kannan, D.C.W. Tsang, M. Schauerte, J. Bosch, H. Noll, Y. S. Ok, K. Scheckel, J. Kumpiene, K. Gobindlal, M. Kah, J. Sperry, M. B. Kirkham, H. Wang, Y. F. Tsang, D. Hou, J. Rinklebe, J. Hazard. Mater. 401 (2021) 123892 (https://doi.org/10.1016/j.jhazmat.2020.123892)

R. Mahinroosta, L. Senevirathna, J. Environ. Manag. 255 (2020) 109896 (https://doi.org/10.1016/j.jenvman.2019.109896)

F. Dixit, R. Dutta, B. Barbeau, P. Berube, M. Mohseni, Chemosphere 272 (2021) 129777 (https://doi.org/10.1016/j.chemosphere.2021.129777)

E. Barth, J. McKernan, D. Bless, K. Dasu, J. Environ. Manag. 296 (2021) 113069 (https://doi.org/10.1016/j.jenvman.2021.113069)

V. Beškoski, M. Lješević, B. Jiménez, J. Muñoz-Arnanz, P. Colomer-Vidal, H. Inui, T. Nakano, Bioremediation of Soils Contaminated with PFAS: An Update on Available Techniques, Pilot Studies, Challenges, and Future Directions, in Soil Remediation Science and Technology. The Handbook of Environmental Chemistry, vol 130, J.J. Ortega-Calvo, F. Coulon, Ed(s). Springer Nature, Cham, Switzerland, 2024, p.332 (https://doi.org/10.1007/698_2023_1070)

E. E. Jasper, V. O. Ajibola, J.C. Onwuka, Appl. Water. Sci. 10 (2020) 132 (https://doi.org/10.1007/s13201-020-01218-y)

A. Nastasović, B. Marković, Lj. Suručić, A. Onjia, Metals 12 (2022) 814 (https://doi.org/10.3390/met12050814)

M. Shafiq, A. A. Alazba, M. T. Amin, Sustainability 13 (2021) 3785 (https://doi.org/10.3390/su13073785)

Most read articles by the same author(s)