Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene)fluorene-2-amine and graphene/ZnO nanocomposite
Main Article Content
Abstract
A carbon paste electrode (CPE) was modified with N-(ferrocenyl-methylidene)fluorene-2-amine and graphene/ZnO nanocomposite. The electrooxidation of captopril (CAP) at the surface of the modified electrode was studied using electrochemical approaches. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of captopril, is described. The electrode was used to study the electrocatalytic oxidation of captopril, by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV) as diagnostic techniques. It has been found that the oxidation of captopril at the surface of modified electrode occurs at a potential of about 340 mV less positive than that of an unmodified CPE. DPV of captopril at the electrochemical sensor exhibited two linear dynamic ranges (0.1–100.0 and 100.0–800.0 μM) with a detection limit (3σ) of 0.05 μM.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Liu, S. Sun, C. Liu, S. Wei, Measurement 44 (2011) 1878 (https://doi.org/10.1016/j.measurement.2011.09.001)
H. Beitollahi, S. Tajik, H. Parvan, H. Soltani, A. Akbari, M. H. Asadi, Anal. Bioanal. Electrochem. 6 (2014) 54
H. Sun, S. Zhao, F. Qu, Measurement 45 (2012) 1111 (https://doi.org/10.1016/j.measurement.2012.01.029)
H. Beitollahi, S. Ghofrani Ivari, M. Torkzadeh-Mahani, Biosens. Bioelectron. 110 (2018) 97 (https://doi.org/10.1016/j.bios.2018.03.003)
K. J. Huang, L. Wang, J. Li, T. Gan, Y. M. Liu, Measurement 46 (2013) 378 (https://doi.org/10.1016/j.measurement.2012.07.012)
M. Mazloum-Ardakani, H. Beitollahi, Z. Taleat, H. Naeimi, N. Taghavinia, J. Electroanal. Chem. 644 (2010) 1 (https://doi.org/10.1016/j.jelechem.2010.02.034)
R. Zhang, S. Liu, L. Wang, G. Yang, Measurement 46 (2013) 1089 (https://doi.org/10.1016/j.measurement.2012.11.007)
H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Anal. Chem. 80 (2008) 9848 (https://doi.org/10.1021/ac801854j)
H. Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh, Measurement 47 (2014) 770 (https://doi.org/10.1016/j.measurement.2013.10.001)
D. T. Gimenes, M. C. Marra, J. M. de Freitas, R. A. A. Muñoz, E. M. Richter, Sensors Actuators, B 212 (2015) 411 (https://doi.org/10.1016/j.snb.2015.01.132)
H. Beitollahi, S. Ghofrani Ivari, R. Alizadeh, R. Hosseinzadeh, Electroanalysis 27 (2015) 1742 (https://doi.org/10.1002/elan.201500016)
X. Ioannides, A. Economou, A. Voulgaropoulos, J. Pharm. Biomed. Anal. 33 (2003) 309 (https://doi.org/10.1016/S0731-7085(03)00262-0)
F. Tache, A. Farca, .Medvedovici, V. David, J. Pharm. Biomed. Anal. 28 (2002) 549 (https://doi.org/10.1016/S0731-7085(01)00687-2)
H. Krimi, M. Keyvanfard, K. Alizad, Iran. J. Pharm. Res. 15 (2016) 107
K. R. Rezende, I. M. Mundim, L. S. Teixeira, W. C. Souza, J. Chromatogr., B 850 (2007) 59 (https://doi.org/10.1016/j.jchromb.2006.11.007)
A. M. El-Didamony, E. A. H. Erfan, Spectrochim. Acta, A 75 (2010) 1138 (https://doi.org/10.1016/j.saa.2009.12.075)
S. Mazurek, R. Szostak, J. Pharm. Biomed. Anal. 40 (2006) 1225 (https://doi.org/10.1016/j.jpba.2005.03.047)
T. Perez-Ruiz, C. Martinez-Lozano, R. Galera, Electrophoresis 27 (2006) 2310 (https://doi.org/10.1002/elps.200500861)
J. A. M. Pulgarin, L. F. G. Bermejo, P. F. Lopez, Anal. Chim. Acta 546 (2005) 60 (https://doi.org/10.1016/j.aca.2005.05.014)
B. Rezaei, S. Damiri, Sensors Actuators, B 134 (2008) 324 (https://doi.org/10.1016/j.snb.2008.05.004)
X. Ioannides, A. Economou, A. Voulgaropoulos, J. Pharm. Biomed. Anal 33 (2003) 309 (https://doi.org/10.1016/S0731-7085(03)00262-0)
H. Parham, B. Zargar, Talanta 65 (2005) 776 (https://doi.org/10.1016/j.talanta.2004.08.005)
J. M. G. Fraga, A. I. J. Abizanda, F. J. Moreno, J. J. A. León, Talanta 46 (1998) 75 (https://doi.org/10.1016/S0039-9140(97)00254-3)
W. Siangproh, P. Nagmukot, O. Chalapakul, Sens. Actuators B 91 (2003) 60 (https://doi.org/10.1016/S0925-4005(03)00067-4)
G. K. Ziyatdinova, G. K. Budnikov, V. I. Pogore ltsev, J. Anal. Chem. 61 (2006) 798 (https://doi.org/10.1134/S1061934806080144)
S. Tajik, M.A. Taher, Microchim. Acta 173 (2011) 249 (https://doi.org/10.1007/s00604-011-0553-z)
H. Beitollahi, S. Tajik, S.Z. Mohammadi, M. Baghayeri, Ionics 20 (2014) 571 (https://doi.org/10.1007/s11581-013-1004-0)
J. H. Luo, X. X. Jiao, N. B. Li, H. Q. Luo, J. Electroanal. Chem. 689 (2013) 130 (https://doi.org/10.1016/j.jelechem.2012.10.013)
H. Mahmoudi Moghaddam, H. Beitollahi, S. Tajik, H. Soltani, Electroanalysis 27 (2015) 2620 (https://doi.org/10.1002/elan.201500166)
Y. Wang, Y. Wu, J. Xie, X. Hu, Sensors Actuators, B 177 (2013) 1161 (https://doi.org/10.1016/j.snb.2012.12.048)
H. Beitollahi, S. Tajik, Sh. Jahani, Electroanalysis 28 (2016) 1093 (https://doi.org/10.1002/elan.201501020)
E. Sabzi, R. E. Minaie, K. Farhadi, M. M. Golzan, Turk. J. Chem. 34 (2010) 901.
H. Beitollahi, J. B. Raoof, H. Karimi-Maleh, R. Hosseinzadeh, J. Solid State Electrochem. 16 (2012) 1701. (https://doi.org/10.1007/s10008-011-1578-2)
J. Huo, E. Shangguan, Q. Li, Electrochim. Acta 89 (2013) 600
H. Beitollahi, F. Garkani Nejad, Electroanalysis 28 (2016) 2237 (https://doi.org/10.1002/elan.201600143)
A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., Wiley, New York, 2001
V. K. Gupta, A. Nayak, S. Agarwal, B. Singhal, Comb. Chem. High Throughput Screen 14 (2011) 284 (https://doi.org/10.2174/138620711795222437)
M. B. Gholivand, M. Khodadadian, Electroanalysis 25 (2013) 1263 (https://doi.org/10.1002/elan.201200665)
M. Mazloum-Ardakani, F. Sabaghian, A. Khoshroo, M. Abolhasani, H. Naeimi, Ionics 21 (2015) 239. (https://doi.org/10.1007/s11581-014-1159-3).