In vitro study of redox properties of azolyl-lactones in human serum Scientific paper

Main Article Content

Milena Simić
https://orcid.org/0000-0002-0865-5509
Jelena Kotur-Stevuljević
https://orcid.org/0000-0002-6980-3069
Predrag Jovanović
https://orcid.org/0000-0001-9002-2796
Miloš Petković
https://orcid.org/0000-0001-9637-1380
Miloš Jovanović
https://orcid.org/0000-0002-2928-6351
Gordana Tasić
https://orcid.org/0000-0003-4784-9581
Vladimir Savić
https://orcid.org/0000-0002-0033-1390

Abstract

Disruption of the redox balance in the body causes oxidative stress that can initiate many diseases. While antioxidants reduce the level of oxidiz­ing compounds in the medium, prooxidants promote the opposite process and have been used in therapies in particular those of cancer diseases. In this study, a series of azolyl lactones, were tested in human serum as a biological matrix and the obtained values of their oxy scores (OS) were compared. The antiox­id­ative properties of these compounds were also tested under conditions of ind­uced oxidative stress using an external prooxidant, t-butylhydroperoxide. The results showed that the sulphur analogue 4-azolyl coumarin 5 has the best anti­oxidant properties (OS –2.2), while the halogenated derivatives of pyrazolyl­coumarin 7 and 8 act as prooxidants, but successfully resist oxidative stress (OS 2.7 and 2.0, respectively). Related phthalides and isocoumarins showed prooxidative properties, but azolyl isocoumarins 10 and 11 show the strongest resistance to oxidative stress, reflected in their negative oxy score value (OS –2.1 and –1.1, respectively). The results demonstrated that combining two pharma­cophores with known redox properties can produce potent compounds in both directions, with the antioxidative and the prooxidative characteristics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. . Simić, “In vitro study of redox properties of azolyl-lactones in human serum: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 6, pp. 589–601, Jun. 2023.
Section
Organic Chemistry

References

C. H. Foyer, G. Noctor, The Plant Cell 17 (2005) 1866 (https://doi.org/10.1105/tpc.105.033589)

H. Sies, Antioxidants 9 (2020) 852 (https://doi.org/10.3390/antiox9090852)

I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, D. Bonaduce, P. Abete, Clin. Interv. Aging 13 (2018) 757 (https://doi.org/10.2147/CIA.S158513)

J. D. Hayes, A. T. Dinkova-Kostova, K. D. Tew, Cancer Cell 38 (2020) 167 (https://doi.org/10.1016/j.ccell.2020.06.001)

M. Mihajlovic, B. Ivkovic, B. Jancic-Stojanovic, A. Zeljkovic, V. Spasojevic-

-Kalimanovska, J. Kotur-Stevuljevic, D. Vujanovic, Anticancer Drugs 31 (2020) 942 (https://doi.org/10.1097/cad.0000000000000924)

I. Kostova, S. Bhatia, P. Grigorov, S. Balkansky, V. S. Parmar, A. K. Prasad, L. Saso, Curr. Med. Chem. 18 (2011) 3929 (https://doi.org/10.2174/092986711803414395)

Z. Rehakova, V. Koleckar, L. Jahodar, L. Opletal, K. Macakova, L. Cahlikova, D. Jun, K. Kuca, J. Enzyme Inhib. Med. Chem. 29 (2014) 49 (https://doi.org/10.3109/14756366.2012.753589)

G. B. Bubols, D. da R. Vianna, A. Medina-Remon, G. von Poser, R. M. Lamuela-Raventos, V. L. Eifler-Lima, S. C. Garcia, Mini Rev. Med. Chem. 13 (2013) 318 (https://doi.org/10.2174/138955713804999775)

D. Procházková, I. Boušová, N. Wilhelmová, Fitoterapia 82 (2011) 513 (https://doi.org/10.1016/j.fitote.2011.01.018)

M. Sökmen, M. Akram Khan, Inflammopharmacol 24 (2016) 81 (https://doi.org/10.1007/s10787-016-0264-5)

K. Tianpanich, S. Prachya,S. Wiyakrutta, C. Mahidol, S. Ruchirawat, P. Kittakoop, J. Nat Prod 74 (2011) 79 (https://doi.org/10.1021/np1003752)

M. Frombaum, S. Le Clanche, D. Bonnefont-Rousselot, D. Borderie, Biochimie 94 (2012) 269 (https://doi.org/10.1021/np1003752)

T. Janković, N. Turković, J. Kotur-Stevuljević, Z. Vujić, B. Ivković, Chem. Biol. Interact. 324 (2020) 109084 (https://doi.org/10.1016/j.cbi.2020.109084)

X. Qiang, Y. Li, X. Yang, L. Luo, R. Xu, Y. Zheng, Z. Cao, Z. Tan, Y. Deng, Bioorganic & Med Chem Lett 27 (2017) 718 (https://doi.org/10.1016/j.bmcl.2017.01.050)

W. S. Hamama, M. A. Berghot, E. A. Baz, M. A. Gouda, Arch. Pharm. 344 (2011) 710 (https://doi.org/10.1002/ardp.201000263)

A. A. Al-Amiery, Y. K. Al-Majedy, A. A. H. Kadhum, A. B. Mohamad, PLOS ONE 10 (2015) e0132175 (https://doi.org/10.1371/journal.pone.0132175)

E. Y. Ahmed, O. M. Abdelhafez, D. Zaafar, A. M. Serry, Y. H. Ahmed, R. F. A. El-Telbany, Z. Y. Abd Elmageed, H. I. Ali, Arch. Pharm. 355 (2022) 2100327 (https://doi.org/10.1002/ardp.202100327)

I. A. M. Radini, D. A. Ibrahim, R. E. Khidre, Acta Pol. Pharm. 79 (2019) 453 (https://doi.org/10.32383/appdr/102651)

M. R. Simić, S. Erić, I. Borić, A. Lubelska, G. Latacz, K. Kiec-Kononowicz, S. Vojnović, J. Nikodinović-Runić, V. M. Savić, J. Serb. Chem. Soc. 86 (2021) 639 (https://doi.org/10.2298/JSC201201025S)

M. Simic, M. Petkovic, P. Jovanovic, M. Jovanovic, G. Tasic, I. Besu, Z. Zizak, I. Aleksic, J. Nikodinovic-Runic, V. Savic, Arch. Pharm. 354 (2021) 2100238 (https://doi.org/10.1002/ardp.202100238)

K. G. Guimarães, R. P. de Freitas, A. L. T. G. Ruiz, G. F. Fiorito, J. E. de Carvalho, E. F. F. da Cunha, T. C. Ramalho, R. B. Alves, Eur. J. Med. Chem. 111 (2016) 103 (https://www.sciencedirect.com/science/article/pii/S0223523416300599)

O. Erel, Clin. Biochem. 38 (2005) 1103 (https://doi.org/10.1016/j.clinbiochem.2005.08.008)

J. Kotur-Stevuljevic, N. Bogavac-Stanojevic, Z. Jelic-Ivanovic, A. Stefanovic, T. Gojkovic, J. Joksic, M. Sopic, B. Gulan, J. Janac, S. Milosevic, Atherosclerosis 241 (2015) 192 (https://doi.org/10.1016/j.atherosclerosis.2015.05.016)

O. Erel, Clin. Biochem. 37 (2004) 277 (https://doi.org/10.1016/j.clinbiochem.2003.11.015)

D. H. Alamdari, K. Paletas, T. Pegiou, M. Sarigianni, C. Befani, G. Koliakos, Clin. Biochem. 40 (2007) 248 (https://doi.org/10.1016/j.clinbiochem.2006.10.017)

G. L. Ellman, Arch. Biochem. Biophys. 82 (1959) 70 (https://doi.org/10.1016/0003-9861(59)90090-6)

E. Taylan, H. Resmi, Turkish J. Biochem. 35 (2010) 275 (https://web.citius.technology/upload/turkjbiochem/2010/275-278.pdf)

C. K.Riener, G. Kada, H.J. Gruber, Anal. Bioanal. Chem, 373 (2002) 266 (https://doi.org/10.1007/s00216-002-1347-2)

D. Crich, L. Quintero, Chem. Rev. 89 (1989) 1413 (https://doi.org/10.1021/cr00097a001)

N. Ivanović, L. Jovanović, Z. Marković, V. Marković, M. D. Joksović, D. Milenković, P. T. Djurdjević, A. Ćirić, L. Joksović, ChemistrySelect 1 (2016) 3870 (https://doi.org/10.1002/slct.201600738)

F. Denés, M. Pichowicz, G. Povie, P. Renaud, Chem. Rev. 114 (2014) 2587 (https://doi.org/10.1021/cr400441m)

Q. Cai, G. Takemura, M. Ashraf, J. Cardiovasc. Pharmacol. 25 (1995) 147 (https://doi.org/10.1097/00005344-199501000-00023)

S. Puntarulo, A. I. Cederbaum, Arch. Biochem. Biophys. 255 (1987) 217 (https://doi.org/10.1016/0003-9861(87)90388-2)

L. F. da Cruz, C. G. Santos, T. P. R. Gonçalves, G. D. Marena, I. L. A. Souza, L. A. R. dos S. Lima, F. M. D. Chequer, F. C. H. Pinto, F. A. R. Nogueira, M. G. de F. Araujo, Res. Soc. Dev. 10 (2021) e7910816948 (https://doi.org/10.33448/rsd-v10i8.16948)

E. H. Avdović, I. P. Petrović, M. J. Stevanović, L. Saso, J. M. Dimitrić Marković, N. D. Filipović, M. Ž. Živić, T. N. Cvetić Antić, M. V. Žižić, N. V. Todorović, M. Vukić, S. R. Trifunović, Z. S. Marković, Oxid. Med. Cell. Longev. 2021 (2021) e8849568 (https://doi.org/10.1155/2023/9979397)

M. Tanaka, S. Motomiya, A. Fujisawa, Y. Yamamoto, J. Clin. Biochem. Nutr. 61 (2017) 164 (https://doi.org/10.3164/jcbn.17-75)

L. A. Clejan, A. I. Cederbaum, Biochim. Biophys. Acta Gen. Subj. 1034 (1990) 233 (https://doi.org/10.1016/0304-4165(90)90082-8).

Most read articles by the same author(s)