In silico studies of phycobilins as potential candidates for inhibitors of viral proteins associated with COVID-19

Main Article Content

Srđan Stojanović
https://orcid.org/0000-0002-1847-9318
Vesna Jovanović
Milan Nikolić
https://orcid.org/0000-0003-0932-889X

Abstract

In this in silico study, it was investigated whether phycobilins (phycocyanobilin, phycoerythrobilin, and phycourobilin) could be inhibitors of the activity of the main proteins of the SARS-CoV-2 virus. All chromophores exhibited a binding energy value of ≥ −37 kJ mol-1 for PLpro-WT, PLpro-C111S, helicase-ANP binding site, Nsp3-macrodomain, Nsp3-MES site, and Nsp10/14-N7-Mtase. Phycocyanobilin showed the highest binding energy of -44.77 kJ mol-1 against the target protein PLpro-C111S. It was found that, apart from the hydrogen bonds and hydrophobic interactions, phycobilins also form electrostatic interactions with the SARS-CoV-2 proteins. The network of non-covalent interactions was found to be important for the stability of the examined virus proteins. All phycobilins have good pharmacokinetic and drug-likeness properties. This study's results suggest that the screened phycobilins could serve as promising drugs for the treatment of COVID-19 with further rigorous validation studies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stojanović, V. Jovanović, and M. Nikolić, “In silico studies of phycobilins as potential candidates for inhibitors of viral proteins associated with COVID-19”, J. Serb. Chem. Soc., May 2024.
Section
Biochemistry & Biotechnology

Funding data

References

A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, B. W. Neuman, D. Penzar, S. Perlman, L. L. M. Poon, D. V. Samborskiy, I. A. Sidorov, I. Sola, J. Ziebuhr, Nat. Microbiol. 5 (2020) 536 (https://doi.org/10.1038/s41564-020-0695-z)

S. Aboul-Fotouh, A. N. Mahmoud, E. M. Elnahas, M. Z. Habib, S. M. Abdelraouf, Virol. J. 20 (2023) 241 (https://doi.org/10.1186/s12985-023-02210-z)

A. von Delft, M. D. Hall, A. D. Kwong, L. A. Purcell, K. S. Saikatendu, U. Schmitz, J. A. Tallarico, A. A. Lee, Nat. Rev. Drug Discov. 22 (2023) 585 (https://doi.org/10.1038/s41573-023-00692-8)

T. F. Aiello, C. Garcia-Vidal, A. Soriano, Rev. Esp. Quimioter. 35 (2022) 10 (https://doi.org/10.37201/req/s03.03.2022)

C. C. Chang, H. J. Hsu, T. Y. Wu, J. W. Liou, Tzu Chi Med. J. 34 (2022) 276 (https://doi.org/10.4103/tcmj.tcmj_318_21)

D. Saxena, L. Batra, S. K. Verma, Pathogens 12 (2023) 823 (https://doi.org/10.3390/pathogens12060823)

M. S. Murgueitio, M. Bermudez, J. Mortier, G. Wolber, Drug Discov. Today Technol. 9 (2012) e219 (https://doi.org/10.1016/j.ddtec.2012.07.009)

P. Gale, Microb. Risk Anal. 21 (2022) 100198 (https://doi.org/10.1016/j.mran.2020.100140)

M. E. Popović, G. Šekularac, M. Popović, Microb. Risk Anal. 26 (2024) 100290 (https://doi.org/10.1016/j.mran.2024.100290)

M. Popović, M. Stevanović, M. Mihailović. J. Serb. Chem. Soc. 89 (2024) 305 (https://doi.org/10.2298/JSC240119019P)

C. H. Kim, Front. Pharmacol. 12 (2021) 590509 (https://doi.org/10.3389/fphar.2021.590509)

M. M. Rahman, M. R. Islam, S. Shohag, M. E. Hossain, M. Shah, S. K. Shuvo, H. Khan, M. A. R. Chowdhury, I. J. Bulbul, M. S. Hossain, S. Sultana, M. Ahmed, M. F. Akhtar, A. Saleem, M. H. Rahman, Environ. Sci. Pollut. Res. Int. 29 (2022) 46527 (https://doi.org/10.1007/s11356-022-20328-5)

R. Ghildiyal, V. Prakash, V. K. Chaudhary, V. Gupta, R. Gabrani, Phytochemicals as Antiviral Agents: Recent Updates. in M. K. Swamy (eds) Plant-derived Bioactives: Production, Properties and Therapeutic Applications. Singapore: Springer Singapore, 2020:279 (https://doi.org/10.1007/978-981-15-1761-7_12)

J. S. Mani, J. B. Johnson, J. C. Steel, D. A. Broszczak, P. M. Neilsen, K. B. Walsh, M. Naiker, Virus Res. 284 (2020) 197989 (https://doi.org/10.1016/j.virusres.2020.197989)

S. B. Kumar, S. Krishna, S. Pradeep, D. E. Mathews, R. Pattabiraman, M. Murahari, T. P. K. Murthy, Comput. Biol. Med. 134 (2021) 104524 (https://doi.org/10.1016/j.compbiomed.2021.104524)

R. C. Silva, H. F. Freitas, J. n. M. Campos, N. M. Kimani, C. H. T. P. Silva, R. S. Borges, S. S. R. Pita, C. B. R. Santos, Int. J. Mol. Sci. 22 (2021) 11739 (https://doi.org/10.3390/ijms222111739)

S. S. Gupta, A. Kumar, R. Shankar, U. Sharma, J. Mol. Graph. Model. 106 (2021) 107916 (https://doi.org/10.1016%2Fj.jmgm.2021.107916)

J. Li, K. T. McKay, J. M. Remington, S. T. Schneebeli, Sci. Rep. 11 (2021) 16307 (https://doi.org/10.1038/s41598-021-95826-6)

B. Pendyala, A. Patras, C. Dash, Front Microbiol. 12 (2021) 645713 (https://doi.org/10.3389/fmicb.2021.645713)

S. Geahchan, H. Ehrlich, M. A. Rahman, Marine Drugs 19 (2021) 409 (https://doi.org/10.3390/md19080409)

L. Tounsi, H. B. Hlima, F. Hentati, O. Hentati, H. Derbel, P. Michaud, S. Abdelkafi, Mar. Drugs 21 (2023) 440 (https://doi.org/10.3390/md21080440)

K. Liu, X. Lu, H. Shi, X. Xu, R. Kong, S. Chang, Nucleic Acids Res. 51 (2023) W365 (https://doi.org/10.1093/nar/gkad414)

O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455 (https://doi.org/10.1002/jcc.21334)

J. Eberhardt, D. Santos-Martins, A. F. Tillack, S. Forli, J. Chem. Inf. Model. 61 (2021) 3891 (https://doi.org/10.1021/acs.jcim.1c00203)

N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminformatics. 3 (2011) 33 (https://doi.org/10.1186/1758-2946-3-33)

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 51 (2023) D1373-D1380 (https://doi.org/10.1093/nar/gkac956)

Biovia, D.S. (2021) Discovery Studio Visualizer. San Diego.

A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7 (2017) 42717 (https://doi.org/10.1038/srep42717)

D. Shin, R. Mukherjee, D. Grewe, D. Bojkova, K. Baek, A. Bhattacharya, L. Schulz, M. Widera, A. R. Mehdipour, G. Tascher, P. P. Geurink, A. Wilhelm, G. van der Heden van Noort, H. Ovaa, S. Müller, K. P. Knobeloch, K. Rajalingam, B. A. Schulman, J. Cinatl, G. Hummer, S. Ciesek, I. Dikic, Nature 587 (2020) 657 (https://doi.org/10.1038/s41586-020-2601-5)

R. Ferreira de Freitas, M. Schapira, Med. Chem. Commun. 8 (2017) 1970 (https://doi.org/10.1039/C7MD00381A)

A. S. Mahadevi, G. N. Sastry, Chem. Rev. 116 (2016) 2775 (https://doi.org/10.1021/cr500344e)

R. Singh, N. Chauhan, M. Kuddus, Environ. Sci. Pollut. Res. Int. 28 (2021) 52798 (https://doi.org/10.1007/s11356-021-16104-6).