On the importance of π–π interactions in structural stability of phycocyanins Scientific paper

Main Article Content

Luka Berberina
https://orcid.org/0000-0003-2792-0205
Milan Nikolić
https://orcid.org/0000-0003-0932-889X
Srđan Stojanović
https://orcid.org/0000-0002-1847-9318
Mario Zlatović
https://orcid.org/0000-0003-4311-1731

Abstract

The influences of π-π interactions in phycocyanin proteins and their environmental preferences were analyzed. The observations indicate that the majority of the aromatic residues in phycocyanin proteins are involved in π-π interactions. Phenylalanine (Phe) and tyrosine (Tyr) residues were found to be involved in π–π interactions much more frequently than tryptophan (Trp) or histidine (His). Similarly, the Phe-Phe and Tyr-Tyr π–π interacting paiThe influences of π-π interactions in phycocyanin proteins and their environmental preferences were analyzed. The observations indicate that the majority of the aromatic residues in phycocyanin proteins are involved in π-π interactions. Phenylalanine (Phe) and tyrosine (Tyr) residues were found to be involved in π–π interactions much more frequently than tryptophan (Trp) or histidine (His). Similarly, the Phe-Phe and Tyr-Tyr π–π interacting pair had the highest frequency of occurrence. In addition to π-π interactions, the arom­atic residues also form π-networks in phycocyanins. The π–π interactions are most favourable at the pair distance range of 5.5–7 Å, with a clear preference for T-shaped ring arrangements. Using ab initio calculations, we observed that most of the π-π interactions possess energy from 0 to -10 kJ mol-1. Stabil­iz­ation centres for these proteins showed that all residues found in π-π inter­actions are important in locating one or more such centres. π-π interacting resi­dues are evolutionary conserved. The results obtained from this study will be beneficial in further understanding the structural stability and eventual develop­ment of protein engineering of phycocyanins.r had the highest frequency of occurrence. In addition to π-π interactions, the arom­atic residues also form π-networks in phycocyanins. The π–π interactions are most favourable at the pair distance range of 5.5–7 Å, with a clear preference for T-shaped ring arrangements. Using ab initio calculations, we observed that most of the π-π interactions possess energy from 0 to -10 kJ mol-1. Stabil­iz­ation centres for these proteins showed that all residues found in π-π inter­actions are important in locating one or more such centres. π-π interacting resi­dues are evolutionary conserved. The results obtained from this study will be beneficial in further understanding the structural stability and eventual develop­ment of protein engineering of phycocyanins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Berberina, M. Nikolić, S. Stojanović, and M. Zlatović, “On the importance of π–π interactions in structural stability of phycocyanins: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 5, pp. 481–494, Mar. 2023.
Section
Organic Chemistry

Funding data

References

N. Tandeau de Marsac, Photosynth. Res. 76 (2003) 193 (https://doi.org/10.1023/A:1024954911473)

P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, Science 290 (2000) 291 (https://doi.org/10.1126/science.290.5490.291)

V. K. Kannaujiya, D. Kumar, V. Singh, R. P. Sinha, in Natural Bioactive Compounds, R. Sinha, D. P. Häder, Eds., Academic Press, New York, 2021, pp. 57––81 ISBN: 0128206594

M. G. de Morais, D. da Fontoura Prates, J. B. Moreira, J. H. Duarte, J. A. V. Costa, Ind. Biotechnol. 14 (2018) 30 (https://doi.org/10.1089/ind.2017.0009)

McGregor, M. Klartag, L. David, N. Adir, J. Mol. Biol. 384 (2008) 406 (https://doi.org/10.1016/j.jmb.2008.09.018)

D. Andersson, B. K. Mishra, N. Forsgren, F. Ekström, A. Linusson, J. Phys. Chem., B 124 (2020) 6529 (https://doi.org/10.1021/acs.jpcb.0c03778)

E. Lanzarotti, L. A. Defelipe, M. A. Marti, A. n. G. Turjanski, J. Cheminform. 12 (2020) 30 (https://doi.org/10.1186/s13321-020-00437-4)

K. S. Chatterjee, R. Das, J. Biol. Chem. 297 (2021) (https://doi.org/10.1016/j.jbc.2021.100970)

H. B. Gray, J. R. Winkler, Chem. Sci. 12 (2021) 13988 (https://doi.org/10.1039/D1SC04286F)

Z. Y. Yan, X. J. Xu, L. Fang, C. Geng, Y. P. Tian, X. D. Li, Phytopathology Res. 3 (2021) 10 (https://doi.org/10.1186/s42483-021-00088-9)

M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 126 (2004) 7690 (https://doi.org/10.1021/ja049434a)

R. Bhattacharyya, U. Samanta, P. Chakrabarti, Protein Eng. Des. Sel. 15 (2002) 91 (https://doi.org/10.1093/protein/15.2.91)

N. Kannan, S. Vishveshwara, Protein Eng. Des. Sel. 13 (2000) 753 (https://doi.org/10.1093/protein/13.11.753)

S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 124 (2002) 104 (https://doi.org/10.1021/ja0105212)

V. Morozov, K. M. S. Misura, K. Tsemekhman, D. Baker, J. Phys. Chem. B. 108 (2004) 8489 (https://doi.org/10.1021/jp037711e)

E. Lanzarotti, R. R. Biekofsky, D. o. A. Estrin, M. A. Marti, A. n. G. Turjanski, J. Chem. Inf. Model. 51 (2011) 1623 (https://doi.org/10.1021/ci200062e)

L. M. Breberina, M. V. Zlatović, M. R. Nikolić, S. Đ. Stojanović, Mol. Inform. 38 (2019) e1800145 (https://doi.org/10.1002/minf.201800145)

L. M. Breberina, M. R. Nikolić, S. Đ. Stojanović, M. V. Zlatović, Comput. Biol. Chem. 100 (2022) 107752 (https://doi.org/10.1016/j.compbiolchem.2022.107752)

P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlic, M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M. Berman, P. E. Bourne, Nucleic Acids Res. 39 (2011) D392 (https://doi.org/10.1093/nar/gkq1021)

G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 247 (1995) 536 (https://doi.org/10.1016/S0022-2836(05)80134-2)

J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol. 285 (1999) 1735 (https://doi.org/10.1006/jmbi.1998.2401)

Discovery Studio Visualizer, release 2020, Accelrys Software Inc., San Diego, CA, 2020

G. B. McGaughey, M. Gagné, A. K. Rappé, J. Biol. Chem. 273 (1998) 15458 (https://doi.org/10.1074/jbc.273.25.15458)

V. R. Ribić, S. Đ. Stojanović, M. V. Zlatović, Int. J. Biol. Macromol. 106 (2018) 559 (https://doi.org/10.1016/j.ijbiomac.2017.08.050)

J. Hostaš, D. Jakubec, R. A. Laskowski, R. Gnanasekaran, J. Řezáč, J. Vondrášek, P. Hobza, J. Chem. Theory Comput. 11 (2015) 4086 (https://doi.org/10.1021/acs.jctc.5b00398)

D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 113 (2013) 2110 (https://doi.org/10.1002/qua.24481)

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 https://doi.org/10.1063/1.456153

T. Clark, J. Chandrasekhar, G. n. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

K. E. Riley, J. A. Platts, J. Řezáč, P. Hobza, J. G. Hill, J Phys. Chem., A 116 (2012) 4159 (https://doi.org/10.1021/jp211997b)

G. J. Jones, A. Robertazzi, J. A. Platts, J. Phys. Chem., B 117 (2013) 3315 (https://doi.org/10.1021/jp400345s)

S. Saebø, W. Tong, P. Pulay, J. Chem. Phys. 98 (1993) 2170 (https://doi.org/10.1063/1.464195)

Reyes, L. Fomina, L. Rumsh, S. Fomine, Int. J. Quantum Chem. 104 (2005) 335 (https://doi.org/10.1002/qua.20558)

R. M. Balabin, J. Chem. Phys. 132 (2010) 231101 (https://doi.org/10.1063/1.3442466)

Y. Deng, B. t. Roux, J. Phys. Chem., B 113 (2009) 2234 https://doi.org/10.1021/jp807701h

J. C. Gumbart, B. t. Roux, C. Chipot, J. Chem. Theory Comput. 9 (2013) 794 https://doi.org/10.1021/ct3008099

J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 9 (2007) 5291 https://doi.org/10.1039/B704781A

Z. Dosztányi, A. Fiser, I. Simon, J. Mol. Biol. 272 (1997) 597 (https://doi.org/10.1006/jmbi.1997.1242)

Z. Dosztányi, C. Magyar, G. Tusnady, I. Simon, Bioinformatics 19 (2003) 899 (https://doi.org/10.1093/bioinformatics/btg110)

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 38 (2010) W529 (https://doi.org/10.1093/nar/gkq399)

B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout, M. Schneider, Nucleic Acids Res. 31 (2003) 365 (https://doi.org/10.1093/nar/gkg095)

C. A. Hunter, J. Singh, J. M. Thornton, J. Mol. Biol. 218 (1991) 837 (https://doi.org/10.1016/0022-2836(91)90271-7)

F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer, J. S. Siegel, J. Am. Chem. Soc. 114 (1992) 5729 (https://doi.org/10.1021/ja00040a036)

S. Mahadevi, G. N. Sastry, Chem. Rev. 116 (2016) 2775 (https://doi.org/10.1021/cr500344e)

Ma, T. Elkayam, H. Wolfson, R. Nussinov, Proc. Natl. Acad. Sci. USA 100 (2003) 5772 (https://doi.org/10.1073/pnas.1030237100)

J. B. Mitchell, R. A. Laskowski, J. M. Thornton, Proteins 29 (1997) 370 (https://doi.org/10.1002/(SICI)1097-0134(199711)29:3%3C370::AID-PROT10%3E3.0.CO;2-K)

E. G. Hohenstein, C. D. Sherrill, J. Phys. Chem., A 113 (2009) 878 (https://doi.org/10.1021/jp809062x)

P. Chakrabarti, R. Bhattacharyya, Prog. Biophys. Mol. Biol. 95 (2007) 83 (https://doi.org/10.1016/j.pbiomolbio.2007.03.016)

B. P. Dimitrijević, S. Z. Borozan, S. Đ. Stojanović, RSC Adv. 2 (2012) 12963 (https://doi.org/10.1039/C2RA21937A)

P. A. Maury, D. N. Reinhoudt, J. Huskens, Curr. Opin. Colloid Interface Sci. 13 (2008) 74 (https://doi.org/10.1016/j.cocis.2007.08.013)

M. Landau, I. Mayrose, Y. Rosenberg, F. Glaser, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 33 (2005) W299-W302 (https://doi.org/10.1093/nar/gki370).

Most read articles by the same author(s)