On the importance of π–π interactions in structural stability of phycocyanins Scientific paper

Main Article Content

Luka Berberina
https://orcid.org/0000-0003-2792-0205
Milan Nikolić
https://orcid.org/0000-0003-0932-889X
Srđan Stojanović
https://orcid.org/0000-0002-1847-9318
Mario Zlatović
https://orcid.org/0000-0003-4311-1731

Abstract

The influences of π-π interactions in phycocyanin proteins and their environmental preferences were analyzed. The observations indicate that the majority of the aromatic residues in phycocyanin proteins are involved in π-π interactions. Phenylalanine (Phe) and tyrosine (Tyr) residues were found to be involved in π–π interactions much more frequently than tryptophan (Trp) or histidine (His). Similarly, the Phe-Phe and Tyr-Tyr π–π interacting paiThe influences of π-π interactions in phycocyanin proteins and their environmental preferences were analyzed. The observations indicate that the majority of the aromatic residues in phycocyanin proteins are involved in π-π interactions. Phenylalanine (Phe) and tyrosine (Tyr) residues were found to be involved in π–π interactions much more frequently than tryptophan (Trp) or histidine (His). Similarly, the Phe-Phe and Tyr-Tyr π–π interacting pair had the highest frequency of occurrence. In addition to π-π interactions, the arom­atic residues also form π-networks in phycocyanins. The π–π interactions are most favourable at the pair distance range of 5.5–7 Å, with a clear preference for T-shaped ring arrangements. Using ab initio calculations, we observed that most of the π-π interactions possess energy from 0 to -10 kJ mol-1. Stabil­iz­ation centres for these proteins showed that all residues found in π-π inter­actions are important in locating one or more such centres. π-π interacting resi­dues are evolutionary conserved. The results obtained from this study will be beneficial in further understanding the structural stability and eventual develop­ment of protein engineering of phycocyanins.r had the highest frequency of occurrence. In addition to π-π interactions, the arom­atic residues also form π-networks in phycocyanins. The π–π interactions are most favourable at the pair distance range of 5.5–7 Å, with a clear preference for T-shaped ring arrangements. Using ab initio calculations, we observed that most of the π-π interactions possess energy from 0 to -10 kJ mol-1. Stabil­iz­ation centres for these proteins showed that all residues found in π-π inter­actions are important in locating one or more such centres. π-π interacting resi­dues are evolutionary conserved. The results obtained from this study will be beneficial in further understanding the structural stability and eventual develop­ment of protein engineering of phycocyanins.

Downloads

Metrics

PDF views
425
Mar 28 '23Mar 31 '23Apr 01 '23Apr 04 '23Apr 07 '23Apr 10 '23Apr 13 '23Apr 16 '23Apr 19 '23Apr 22 '238
|

Article Details

How to Cite
[1]
L. Berberina, M. Nikolić, S. Stojanović, and M. Zlatović, “On the importance of π–π interactions in structural stability of phycocyanins: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 5, pp. 481–494, Mar. 2023.
Section
Organic Chemistry

Funding data

References

N. Tandeau de Marsac, Photosynth. Res. 76 (2003) 193 (https://doi.org/10.1023/A:1024954911473)

P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, Science 290 (2000) 291 (https://doi.org/10.1126/science.290.5490.291)

V. K. Kannaujiya, D. Kumar, V. Singh, R. P. Sinha, in Natural Bioactive Compounds, R. Sinha, D. P. Häder, Eds., Academic Press, New York, 2021, pp. 57––81 ISBN: 0128206594

M. G. de Morais, D. da Fontoura Prates, J. B. Moreira, J. H. Duarte, J. A. V. Costa, Ind. Biotechnol. 14 (2018) 30 (https://doi.org/10.1089/ind.2017.0009)

McGregor, M. Klartag, L. David, N. Adir, J. Mol. Biol. 384 (2008) 406 (https://doi.org/10.1016/j.jmb.2008.09.018)

D. Andersson, B. K. Mishra, N. Forsgren, F. Ekström, A. Linusson, J. Phys. Chem., B 124 (2020) 6529 (https://doi.org/10.1021/acs.jpcb.0c03778)

E. Lanzarotti, L. A. Defelipe, M. A. Marti, A. n. G. Turjanski, J. Cheminform. 12 (2020) 30 (https://doi.org/10.1186/s13321-020-00437-4)

K. S. Chatterjee, R. Das, J. Biol. Chem. 297 (2021) (https://doi.org/10.1016/j.jbc.2021.100970)

H. B. Gray, J. R. Winkler, Chem. Sci. 12 (2021) 13988 (https://doi.org/10.1039/D1SC04286F)

Z. Y. Yan, X. J. Xu, L. Fang, C. Geng, Y. P. Tian, X. D. Li, Phytopathology Res. 3 (2021) 10 (https://doi.org/10.1186/s42483-021-00088-9)

M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 126 (2004) 7690 (https://doi.org/10.1021/ja049434a)

R. Bhattacharyya, U. Samanta, P. Chakrabarti, Protein Eng. Des. Sel. 15 (2002) 91 (https://doi.org/10.1093/protein/15.2.91)

N. Kannan, S. Vishveshwara, Protein Eng. Des. Sel. 13 (2000) 753 (https://doi.org/10.1093/protein/13.11.753)

S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 124 (2002) 104 (https://doi.org/10.1021/ja0105212)

V. Morozov, K. M. S. Misura, K. Tsemekhman, D. Baker, J. Phys. Chem. B. 108 (2004) 8489 (https://doi.org/10.1021/jp037711e)

E. Lanzarotti, R. R. Biekofsky, D. o. A. Estrin, M. A. Marti, A. n. G. Turjanski, J. Chem. Inf. Model. 51 (2011) 1623 (https://doi.org/10.1021/ci200062e)

L. M. Breberina, M. V. Zlatović, M. R. Nikolić, S. Đ. Stojanović, Mol. Inform. 38 (2019) e1800145 (https://doi.org/10.1002/minf.201800145)

L. M. Breberina, M. R. Nikolić, S. Đ. Stojanović, M. V. Zlatović, Comput. Biol. Chem. 100 (2022) 107752 (https://doi.org/10.1016/j.compbiolchem.2022.107752)

P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlic, M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M. Berman, P. E. Bourne, Nucleic Acids Res. 39 (2011) D392 (https://doi.org/10.1093/nar/gkq1021)

G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 247 (1995) 536 (https://doi.org/10.1016/S0022-2836(05)80134-2)

J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol. 285 (1999) 1735 (https://doi.org/10.1006/jmbi.1998.2401)

Discovery Studio Visualizer, release 2020, Accelrys Software Inc., San Diego, CA, 2020

G. B. McGaughey, M. Gagné, A. K. Rappé, J. Biol. Chem. 273 (1998) 15458 (https://doi.org/10.1074/jbc.273.25.15458)

V. R. Ribić, S. Đ. Stojanović, M. V. Zlatović, Int. J. Biol. Macromol. 106 (2018) 559 (https://doi.org/10.1016/j.ijbiomac.2017.08.050)

J. Hostaš, D. Jakubec, R. A. Laskowski, R. Gnanasekaran, J. Řezáč, J. Vondrášek, P. Hobza, J. Chem. Theory Comput. 11 (2015) 4086 (https://doi.org/10.1021/acs.jctc.5b00398)

D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 113 (2013) 2110 (https://doi.org/10.1002/qua.24481)

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 https://doi.org/10.1063/1.456153

T. Clark, J. Chandrasekhar, G. n. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

K. E. Riley, J. A. Platts, J. Řezáč, P. Hobza, J. G. Hill, J Phys. Chem., A 116 (2012) 4159 (https://doi.org/10.1021/jp211997b)

G. J. Jones, A. Robertazzi, J. A. Platts, J. Phys. Chem., B 117 (2013) 3315 (https://doi.org/10.1021/jp400345s)

S. Saebø, W. Tong, P. Pulay, J. Chem. Phys. 98 (1993) 2170 (https://doi.org/10.1063/1.464195)

Reyes, L. Fomina, L. Rumsh, S. Fomine, Int. J. Quantum Chem. 104 (2005) 335 (https://doi.org/10.1002/qua.20558)

R. M. Balabin, J. Chem. Phys. 132 (2010) 231101 (https://doi.org/10.1063/1.3442466)

Y. Deng, B. t. Roux, J. Phys. Chem., B 113 (2009) 2234 https://doi.org/10.1021/jp807701h

J. C. Gumbart, B. t. Roux, C. Chipot, J. Chem. Theory Comput. 9 (2013) 794 https://doi.org/10.1021/ct3008099

J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 9 (2007) 5291 https://doi.org/10.1039/B704781A

Z. Dosztányi, A. Fiser, I. Simon, J. Mol. Biol. 272 (1997) 597 (https://doi.org/10.1006/jmbi.1997.1242)

Z. Dosztányi, C. Magyar, G. Tusnady, I. Simon, Bioinformatics 19 (2003) 899 (https://doi.org/10.1093/bioinformatics/btg110)

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 38 (2010) W529 (https://doi.org/10.1093/nar/gkq399)

B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout, M. Schneider, Nucleic Acids Res. 31 (2003) 365 (https://doi.org/10.1093/nar/gkg095)

C. A. Hunter, J. Singh, J. M. Thornton, J. Mol. Biol. 218 (1991) 837 (https://doi.org/10.1016/0022-2836(91)90271-7)

F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer, J. S. Siegel, J. Am. Chem. Soc. 114 (1992) 5729 (https://doi.org/10.1021/ja00040a036)

S. Mahadevi, G. N. Sastry, Chem. Rev. 116 (2016) 2775 (https://doi.org/10.1021/cr500344e)

Ma, T. Elkayam, H. Wolfson, R. Nussinov, Proc. Natl. Acad. Sci. USA 100 (2003) 5772 (https://doi.org/10.1073/pnas.1030237100)

J. B. Mitchell, R. A. Laskowski, J. M. Thornton, Proteins 29 (1997) 370 (https://doi.org/10.1002/(SICI)1097-0134(199711)29:3%3C370::AID-PROT10%3E3.0.CO;2-K)

E. G. Hohenstein, C. D. Sherrill, J. Phys. Chem., A 113 (2009) 878 (https://doi.org/10.1021/jp809062x)

P. Chakrabarti, R. Bhattacharyya, Prog. Biophys. Mol. Biol. 95 (2007) 83 (https://doi.org/10.1016/j.pbiomolbio.2007.03.016)

B. P. Dimitrijević, S. Z. Borozan, S. Đ. Stojanović, RSC Adv. 2 (2012) 12963 (https://doi.org/10.1039/C2RA21937A)

P. A. Maury, D. N. Reinhoudt, J. Huskens, Curr. Opin. Colloid Interface Sci. 13 (2008) 74 (https://doi.org/10.1016/j.cocis.2007.08.013)

M. Landau, I. Mayrose, Y. Rosenberg, F. Glaser, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 33 (2005) W299-W302 (https://doi.org/10.1093/nar/gki370).

Most read articles by the same author(s)