Investigations on the role of cation–pi interactions in active centres of superoxide dismutase Scientific paper

Main Article Content

Srđan Stojanović
https://orcid.org/0000-0002-1847-9318
Mario Zlatović
https://orcid.org/0000-0003-4311-1731

Abstract

In this study, we have analysed the influence of cation–π interactions on stability and properties of superoxide dismutase (SOD) active centres. The number of interactions formed by arginine is higher than by lysine in the cat­ionic group, while those formed by histidine are comparatively higher in the π group. The energy contribution resulting from most frequent cation–π interact­ions was in the lower range of strong hydrogen bonds. The cation–π interact­ions involving transition metal ions as cation have energy more negative than –418.4 kJ mol-1. The stabilization centres for these proteins showed that all the residues involved in cation–π interactions were important in locating one or more of such centres. The majority of the residues involved in cation–p inter­actions were evolutionarily conserved and might have a significant contribution towards the stability of SOD proteins. The results presented in this work can be very useful for understanding the contribution of cation–π interactions to the stability of SOD active centres.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stojanović and M. Zlatović, “Investigations on the role of cation–pi interactions in active centres of superoxide dismutase: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 465–477, Mar. 2022.
Section
Theoretical Chemistry

References

K. A. Dill, Biochemistry 29 (1990) 7133 (https://doi.org/10.1021/bi00483a001)

J. C. Ma, D. A. Dougherty, Chem. Rev. 97 (1997) 1303 (https://doi.org/10.1021/cr9603744)

K. S. Kim, P. Tarakeshwar, J. Y. Lee, Chem. Rev. 100 (2000) 4145 (https://doi.org/10.1021/cr990051i)

R. Wintjens, J. Liévin, M. Rooman, E. Buisine, J. Mol. Biol. 302 (2000) 393 (https://doi.org/10.1006/jmbi.2000.4040)

J. Cheng, W. Zhu, Y. Tang, Y. Xu, Z. Li, K. Chen, H. Jiang, Chem. Phys. Lett. 422 (2006) 455 (https://doi.org/10.1016/j.cplett.2006.03.005)

H. Ghiassi, H. Raissi, J. Sulfur Chem. 36 (2015) 48 (https://doi.org/10.1080/17415993.2014.962537)

N. Kumar, A. S. Gaur, G. N. Sastry, J. Chem. Sci. 133 (2021) 97 (https://doi.org/10.1007/s12039-021-01959-6)

S. M. Liao, Q. S. Du, J. Z. Meng, Z. W. Pang, R. B. Huang, Chem. Cent. J. 7 (2013) 44 (https://doi.org/10.1186/1752-153X-7-44)

S. Stojanović, Z. Petrović, M. Zlatović, J. Serb. Chem. Soc. 86 (2021) 781 (https://doi.org/10.2298/JSC210321042S)

S. Mecozzi, A. P. West, D. A. Dougherty, J. Am. Chem. Soc. 118 (1996) 2307 (https://doi.org/10.1021/ja9539608)

R. A. Kumpf, D. A. Dougherty, Science 261 (1993) 1708 (https://doi.org/10.1126/science.8378771)

D. Zhu, B. E. Herbert, M. A. Schlautman, E. R. Carraway, J. Environ. Qual. 33 (2004) 276 (https://doi.org/10.2134/jeq2004.2760)

L. M. Salonen, M. Ellermann, F. o. Diederich, Angew. Chem. Int. Ed. 50 (2011) 4808 (https://doi.org/10.1002/anie.201007560)

M. Moradi, A. A. Peyghan, Z. Bagheri, M. Kamfiroozi, J. Mol. Mod. 18 (2012) 3535 (https://doi.org/10.1007/s00894-012-1366-7)

U. D. Priyakumar, M. Punnagai, G. P. Krishna Mohan, G. N. Sastry, Tetrahedron 60 (2004) 3037 (https://doi.org/10.1016/j.tet.2004.01.086)

L. Brocchieri, S. Karlin, Proc. Natl. Acad. Sci. USA 91 (1994) 9297 https://doi.org/10.1073/pnas.91.20.9297)

P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlic, M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M. Berman, P. E. Bourne, Nucleic Acids Res. 39 (2011) D392 (https://doi.org/10.1093/nar/gkq1021

J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol. 285 (1999) 1735 (https://doi.org/10.1006/jmbi.1998.2401)

Discovery Studio Visualizer, Release 2020, Accelrys Software Inc., Accelrys Software Inc., San Diego, CA, 2020

V. R. Ribić, S. Đ. Stojanović, M. V. Zlatović, Int. J. Biol. Macromol. 106 (2018) 559 (https://doi.org/10.1016/j.ijbiomac.2017.08.050)

J. Hostaš, D. Jakubec, R. A. Laskowski, R. Gnanasekaran, J. Řezáč, J. Vondrášek, P. Hobza, J. Chem. Theory Comput. 11 (2015) 4086 (http://dx.doi.org/10.1021/acs.jctc.5b00398)

Schrödinger Release 2018-1: Jaguar, Schrödinger, LLC, New York, 2018

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

T. Clark, J. Chandrasekhar, G. n. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 113 (2013) 2110 (https://doi.org/10.1002/qua.24481)

K. E. Riley, J. A. Platts, J. Řezáč, P. Hobza, J. G. Hill, J. Phys. Chem., A 116 (2012) 4159 (https://doi.org/10.1021/jp211997b)

G. J. Jones, A. Robertazzi, J. A. Platts, J. Phys. Chem., B 117 (2013) 3315 (https://doi.org/10.1021/jp400345s)

S. Saebø, W. Tong, P. Pulay, J. Chem. Phys. 98 (1993) 2170 (https://doi.org/10.1063/1.464195)

A. Reyes, L. Fomina, L. Rumsh, S. Fomine, Int. J. Quantum Chem. 104 (2005) 335 (https://doi.org/10.1002/qua.20558)

R. M. Balabin, J. Chem. Phys. 132 (2010) 231101 (https://doi.org/10.1063/1.3442466)

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299 (https://doi.org/10.1063/1.448975)

Y. Deng, B. t. Roux, J. Phys. Chem., B 113 (2009) 2234 (https://doi.org/10.1021/jp807701h)

J. C. Gumbart, B. t. Roux, C. Chipot, J. Chem. Theory Comput. 9 (2013) 794 (https://doi.org/10.1021/ct3008099)

Z. Dosztányi, A. Fiser, I. Simon, J. Mol. Biol. 272 (1997) 597 (https://doi.org/10.1006/jmbi.1997.1242)

Z. Dosztányi, C. Magyar, G. Tusnady, I. Simon, Bioinformatics 19 (2003) 899 (https://doi.org/10.1093/bioinformatics/btg110)

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 38 (2010) W529 (https://doi.org/10.1093/nar/gkq399)

B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout, M. Schneider, Nucleic Acids Res. 31 (2003) 365 (https://doi.org/10.1093/nar/gkg095)

A. S. Mahadevi, G. N. Sastry, Chem. Rev. 113 (2013) 2100 (https://doi.org/10.1021/cr300222d)

M. M. Gromiha, Biophys. Chem. 103 (2003) 251 (https://doi.org/10.1016/S0301-4622 (02)00318-6)

B. P. Dimitrijević, S. Z. Borozan, S. Đ. Stojanović, RSC Adv. 2 (2012) 12963 (https://doi.org/10.1039/C2RA21937A)

S. Z. Borozan, B. P. Dimitrijević, S. Đ. Stojanović, Comput. Biol. Chem. 47 (2013) 105 (https://doi.org/10.1016/j.compbiolchem.2013.08.005)

I. D. Mucić, M. R. Nikolić, S. Đ. Stojanović, Protoplasma 252 (2015) 947 (https://doi.org/10.1007/s00709-014-0727-8)

A. S. Mahadevi, G. N. Sastry, Chem. Rev. 116 (2016) 2775 (https://doi.org/10.1021/cr500344e)

D. Kim, E. C. Lee, K. S. Kim, P. Tarakeshwar, J. Phys. Chem., A 111 (2007) 7980 (https://doi.org/10.1021/jp073337x)

M. R. Davis, D. A. Dougherty, Phys. Chem. Chem. Phys. 17 (2015) 29262 (https://doi.org/10.1039/C5CP04668H)

G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford University Press, Oxford, 1999.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.