Terephthalate-bridged two-dimensional heteronuclear Cu(II)–Mn(II) complex with terminal 2,2-dipyridylamine ligand

Main Article Content

Lidija Radovanović
Jelena Rogan
Dejan Poleti
Marko V Rodić
Zvonko Jagličić

Abstract

A terephthalate-bridged heteronuclear Cu(II)–Mn(II) complex [Cu2Mn(dipya)2(tpht)3]n, I, where dipya is 2,2′-dipyridylamine and tpht is anion of 1,4-benzenedicarboxylic (terephthalic, H2tpht) acid, has been synthesized under hydrothermal conditions. The obtained complex I was characterized by a single-crystal X-ray diffraction, FTIR spectroscopy, TG/DSC analysis and magnetic measurements. The Cu(II) and Mn(II) metal centers adopt distorted octahedral geometry and they are linked by bridging tpht ligands. Two crystallographically different tpht anions are coordinated as tridentate and hexadentate ligands forming two-dimensional layers. The layers are inter­connected by hydrogen bonds and additionally stabilized by non-covalent C‑H···π interactions. The measurements of magnetic susceptibility have proven that I is an almost perfect paramagnet.

Downloads

Metrics

PDF views
273
Dec 04 '17Dec 07 '17Dec 10 '17Dec 13 '17Dec 16 '17Dec 19 '17Dec 22 '17Dec 25 '17Dec 28 '17Dec 31 '17Jan 01 '182.0
| |
DataCite
1

Article Details

How to Cite
[1]
L. Radovanović, J. Rogan, D. Poleti, M. V. Rodić, and Z. Jagličić, “Terephthalate-bridged two-dimensional heteronuclear Cu(II)–Mn(II) complex with terminal 2,2-dipyridylamine ligand”, J. Serb. Chem. Soc., vol. 82, no. 11, pp. 1247–1258, Dec. 2017.
Section
Inorganic Chemistry
Author Biographies

Jelena Rogan, Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade

Department of General and Inorganic Chemistry

Dejan Poleti, Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade

Department of General and Inorganic Chemistry

References

a) P. Buchwalter, J. Rosé, P. Braunstein, Chem. Rev. 115 (2015) 28; b) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 38 (2009) 1294; c) Y. Q. Sun, Y. Y. Xu, L. Wu, Y. F. Zheng, D. Z. Gao, G. Y. Zhang, Polyhedron 91 (2015) 1

X. J. Kong, Y. P. Ren, W. X. Chen, L. S. Long, Z. Zheng, R. B. Huang, L. S. Zheng, Angew. Chem., Int. Ed. 47 (2008) 2398

S. X. Cui, Y. L. Zhao, J. P. Zhang, Q. Liu, J. Mol. Struct. 927 (2009) 21

a) X. S. Tan, J. Sun, D. F. Xiang, W. X. Tang, Inorg. Chim. Acta 255 (1997) 157; b) L. C. Francesconi, D. R. Corbin, A. W. Clauss, D. N. Hendrickson, G. D. Stucky, Inorg. Chem. 20 (1981) 2078

C. E. Xanthopulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, A. Terzis, M. Mentzafos, A. Hountas, Inorg. Chem. 32 (1993) 5433

Y. Z. Zheng, Z. Zheng, X. M. Chen, Coord. Chem. Rev. 258–259 (2014) 1

M. Kurmoo, Chem. Soc. Rev. 38 (2009) 1353

H. X. Zhang, B. S. Kang, A. W. Xu, Z. N. Chen, Z. Y. Zhou, A. S. C. Chan, K. B. Yuc, C. Ren, J. Chem. Soc., Dalton Trans. (2001) 2559

E. G. Bakalbassis, J. Mrozinski, C. A. Tsipis, Inorg. Chem. 24 (1985) 3548

L. Deakin, A. M. Arif, J. S. Miller, Inorg. Chem. 38 (1999) 5072

M. Kurmoo, H. Kumagai, M. A. Green, B. W. Lovett, S. J. Blundell, A. Ardavan, J. Singleton, J. Solid State Chem. 159 (2001) 343

J. Cano, G. De Munno, J. L. Sanz, R. Ruiz, J. Faus, F. Lloret, M. Julve, A. Caneschi, J. Chem. Soc., Dalton Trans. (1997) 1915

J. Cano, G. De Munno, J. Sanz, R. Ruiz, F. Lloret, J. Faus, M. Julve, J. Chem. Soc., Dalton Trans. (1994) 3465

D. Sun, R. Cao, Y. Liang, Q. Shi, W. Su, M. Hong, J. Chem. Soc., Dalton Trans. (2001) 2335

W. G. Lu, J. H. Deng, D. C. Zhong, Inorg. Chem. Commun. 20 (2012) 312

L. Radovanović, J. Rogan, D. Poleti, M. V. Rodić, N. Begović, Inorg. Chim. Acta 445 (2016) 46

D. Poleti, J. Rogan, M. V. Rodić, L. Radovanović, Acta Crystallogr., C 71 (2015) 110

Lj. Karanović, D. Poleti, J. Rogan, G. A. Bogdanović, A. Spasojević-de Biré, Acta Crystallogr., C 58 (2002) m275

L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M. V. Rodić, Polyhedron 112 (2016) 18

Y. B. Go, X. Wang, E. V. Anokhina, A. Jacobson, Inorg. Chem. 44 (2005) 8265

C. R. Groom, F. H. Allen, Angew. Chem., Int. Ed. 53 (2014) 662

H. Hu, R. H. Zhang, F. Yang, Y. H. Zhang, Q. L. Wang, G. M. Yang, Inorg. Chem. Commun. 40 (2014) 87

M. C. Burla, C. Giacovazzo, G. Polidori, J. Appl. Crystallogr. 46 (2013) 1592

G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3

L. J. Farrugia, J. Appl. Crystallogr. 45 (2012) 849

M. A. Halceow, Chem. Soc. Rev. 42 (2013) 1784

a) N. E. Brese, M. O'Keeffe, Acta Crystallogr., B 47 (1991) 192; b) I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, Oxford, 2002

E. G. Bakalbassis, J. Mrozinski, C. A. Tsipis, Inorg. Chem. 25 (1986) 3684

G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 33 (1980) 227

K. Nakamoto, Applications in Coordination Chemistry, in Infrared and Raman Spectra of Inorganic and Organic Coordination Compounds, Part B, 5th ed., K. Nakamoto, Wiley-Interscience, New York, 1997, p. 60 (for coordination modes of COO groups) and p. 55 (for M–O vibrations)

E. Castellucci, L. Angeloni, N. Neto, G. Sbrana, Chem. Phys. 43 (1979) 365

V. G. Makhankova, O. V. Khavryuchenko, V. V. Lisnyak, V. N. Kokozay, V. V. Dyako¬nenko, O. V. Shishkin, B. W. Skelton, J. Jezierska, J. Solid State Chem. 183 (2010) 2695

G. A. Bain, J. F. Berry, J. Chem. Educ. 85 (2008) 532

N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, Philadelphia, PA, 1976

F. E. Mabbs, D. J. Machin, Magnetism and Transition Metal Complexes, Dover Pub-lic¬ations, Inc. Mineola, New York, 1973.

Most read articles by the same author(s)