Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor Scientific paper

Main Article Content

Lidija Radovanović
https://orcid.org/0000-0002-7505-6290
Željko Radovanović
https://orcid.org/0000-0002-0602-3831
Bojana Simović
https://orcid.org/0000-0002-9407-155X
Milica V. Vasić
https://orcid.org/0000-0002-9130-6720
Bojana Balanč
https://orcid.org/0000-0002-7859-9979
Aleksandra Dapčević
https://orcid.org/0000-0001-7650-7156
Miroslav D. Dramićanin
Jelena Rogan
https://orcid.org/0000-0002-4147-5251

Abstract

A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n com­plex material, I (dipya = 2,2’-dipyridylamine, tpht2– = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of I in an air atmosphere at 450 °C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nano­particles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV–Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Radovanović, “Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 3, pp. 313–325, Jan. 2023.
Section
Materials

Funding data

References

C. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 53 (2014) 1488 (https://dx.doi.org/doi: 10.1002/anie.201303971)

C. N. R. Rao, B. Raveau, Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd ed., Wiley-VCH, New York, 1998 (https://doi.org/10.1002/(SICI)1099-0739(199906)13:6<476::AID-AOC851>3.0.CO;2-N)

А. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7 (2014) 2833 (https://dx.doi.org/10.3390/ma7042833)

G. D. Park, Y. C. Kang, J. S. Cho, Nanomaterials 12 (2022) 680 (https://doi.org/10.3390/nano12040680)

M. Fortuño-Morte, P. Serna-Gallén, H. Beltrán-Mir, E. Cordoncillo, J. Mat. 7 (2021) 1061 (https://doi.org/10.1016/j.jmat.2021.02.002)

T. E. R. Fiuza, D. Göttert, L. J. Pereira, S. R. M. Antunes, A. V. C. de Andrade, A. C. Antunes, É. C. F. de Souza, Process. Appl. Ceram. 12 (2018) 319 (https://doi.org/10.2298/PAC1804319R)

G. Pfaff, Phys. Sci. Rev. 7 (2022) 7 (https://doi.org/10.1515/psr-2020-0183)

G. Osmond, AICCM Bull. 33 (2012) 20 (http://dx.doi.org/10.1179/bac.2012.33.1.004)

L. J. Almeidaa, E. C. Grzebieluckaa, S. R. M. Antunesa, C. P. F. Borgesa, A. V. C. de Andradeb, É. C. F. de Souza, Mat. Res. 23 (2020) e20190515 (https://doi.org/10.1590/1980-5373-MR-2019-0515)

T. R. Cook, Y. R. Zheng, P. J. Stang, Chem. Rev. 113 (2013) 734 (https://doi.org/10.1021/cr3002824)

D. Sun, R. Cao, Y. Liang, Q. Shi, W. Sua, M. Hong, J. Chem. Soc., Dalton Trans. (2001) 2335 (https://doi.org/10.1039/B102888J)

Z. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu, L. Gu, S. Cai, X. Wang, W. Xiong, Z. An, W. Huang, Angew. Chem. Int. Ed. 57 (2018) 678 (https://doi.org/10.1002/anie.201710017)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)

H. Lu, D. S. Wright, S. D. Pike, Chem. Commun. 56 (2020) 854 (https://doi.org/10.1039/C9CC06258K)

M. Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256 (2012) 2921 (https://doi.org/10.1016/j.ccr.2012.05.032)

L. Radovanović, J. D. Zdravković, B. Simović, Ž. Radovanović, K. Mihajlovski, M. D. Dramićanin, J. Rogan, J. Serb. Chem. Soc. 85 (2020) 1475 (https://doi.org/10.2298/JSC200629048R)

L. Radovanović, J. Rogan, D. Poleti, M. V. Rodić, N. Begović, Inorg. Chim. Acta 445 (2016) 46 (https://doi.org/10.1016/j.ica.2016.02.026)

L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M. V. Rodić, Polyhedron 112 (2016) 18 (https://dx.doi.org/10.1016/j.poly.2016.03.054)

H. M. Rietveld, J. Appl. Cryst. 2 (1969) 65 (https://doi.org/10.1107/S0021889869006558)

J. Rodríguez-Carvajal, Newsletter 26 (2001) 12 (http://journals.iucr.org/iucr-top/comm/cpd/Newsletters/)

M. V. Vasić, L. Pezo, M. R. Vasić, N. Mijatović, M. Mitrić, Bol. Soc. Esp. Ceram. V. (2020) (https://doi.org/10.1016/j.bsecv.2020.11.006)

C. Molinari, S. Conte, C. Zanelli, M. Ardit, G. Cruciani, M. Dondi, Ceram. Int. 46 (2020) 21839 (https://doi.org/10.1016/j.ceramint.2020.05.302)

E. Castellucci, L. Angeloni, N. Neto, G. Sbrana, Chem. Phys. 43 (1979) 365 (https://doi.org/10.1016/0301-0104(79)85204-0)

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Organic Coordination Compounds, Part B, 5th ed., Wiley-Interscience, New York, 1997

N. Senthilkumar, V. Venkatachalam, M. Kandiban, P. Vigneshwaran, R. Jayavel, Vetha Potheher, Physica E 106 (2019) 121 (https://doi.org/10.1016/j.physe.2018.10.027)

W. Konicki, D. Sibera, U. Narkiewicz, Separ. Sci. Technol. 53 (2018) 1295 (https://doi.org/10.1080/01496395.2018.1444054)

Holmberg, D. O. Shah, M. J. Schwuger, Handbook of Applied Surface and Colloid Chemistry, Vol. 2, John Wiley & Sons, Ltd., Chichester, 2002

R Greenwood, K Kendall, J. Eur. Ceram. Soc. 19 (1999) 479 (http://dx.doi.org/10.1016/S0955-2219(98)00208-8)

M. Staiger, P. Bowen, J. Ketterer, J. Bohonek, J. Disper. Sci. Technol. 23 (2002) 619 (https://doi.org/10.1081/DIS-120015367)

Nie, G. Chang, R. Li, Coatings 20 (2020) 741 (https://doi.org/10.3390/coatings10080741)

H. Morii, K. Hayashi, K. Iwasaki, (Hiroshima-shi, Hiroshima-ken (JP)), EP 1 686 158 B1 (2006)

E. A. Medina, J. Li, M. A. Subramanian, Prog. Solid State Chem. 45–46 (2017) 9 (https://doi.org/10.1016/j.progsolidstchem.2017.02.002)

SRPS EN ISO 10545-15: Ceramic tiles — Part 15: Determination of lead and cadmium given off by glazed tiles, 2012

J. W. Gallaway, M. Menard, B. Hertzberg, Z. Zhong, M. Croft, L. A. Sviridov, D. E. Turney, S. Banerjee, J. Electrochem. Soc. 162 (2015) A162 (https://doi.org/10.1149/2.0811501jes).

Most read articles by the same author(s)