Quantitative structure–retention relationship model for predicting retention indices of constituents of essential oils of Thymus vulgaris (Lamiaceae) (Short communication)
Main Article Content
Abstract
In this paper, a quantitative structure–retention relationship (QSRR) model was developed for predicting the retention indices (log RI) of 36 constituents of essential oils. First, the chemical structure of each compound was sketched using HyperChem software. Then, molecular descriptors covering different information of molecular structures were calculated by Dragon software. The results illustrated that linear techniques, such as multiple linear regression (MLR), combined with a successful variable selection procedure are capable of generating an efficient QSRR model for predicting the retention indices of different compounds. This model, with high statistical significance (R2 = 0.9781, Q2LOO = 0.9691, Q2ext = 0.9546, Q2L(5)O = 0.9667, F = 245.27), could be used adequately for the prediction and description of the retention indices of other essential oil compounds. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-5-out cross-validation, bootstrap, randomization test and validation through the test set.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Burt, Int. J. Food Microbiol. 94 (2004) 223 (https://doi.org/10.1016/j.ijfoodmicro.2004.03.022)
S.-T. Chang, P.-F. Chen, S.-C. Chang, J. Ethnopharmacol. 77 (2001) 123 (https://doi.org/10.1016/S0378-8741(01)00273-2)
D. Kalemba, A. Kunicka, Curr. Med. Chem. 10 (2003) 813 (https://doi.org/10.2174/0929867033457719)
C. L. Wilson, J. M. Solar, A. El Ghaouth, M. E. Wisniewski, Plant Dis. 81 (1997) 204 (https://doi.org/10.1094/PDIS.1997.81.2.204)
M. Burits, F. Bucar, Phytother. Res. 14 (2000) 323 (https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q)
P. H. Warnke, E. Sherry, P. A. J. Russo, Y. Acil, J. Wiltfang, S. Sivananthan, M. Sprengel, J. C. Roldàn, S. Schubert, J. P. Bredee, I. N. G. Springer, Phytomedicine 13 (2006) 463 (https://doi.org/10.1016/j.phymed.2005.09.012)
L.-T. Qin, S.-S. Liu, F. Chen, Q.-F. Xiao, Q.-S. Wu, Chemosphere 90 (2013) 300 (https://doi.org/10.1016/j.chemosphere.2012.07.010)
M. Rahimi, H. Farahbakhsh, N. Salehi, M. Nekoei, Int. J. Adv. Appl. Sci. 1 (2012) 91 (https://www.iaescore.com/journals/index.php/IJAAS/article/view/775)
S. Riahi, E. Pourbasheer, M. R. Ganjali, P. Norouzi, J. Hazard. Mater. 166 (2009) 853 (https://doi.org/10.1016/j.jhazmat.2008.11.097)
L. Liao, D. Qing, J. Li, G. Lei, J. Mol. Struct. 975 (2010) 389 (https://doi.org/10.1016/j.molstruc.2010.05.017)
H. Noorizadeh, A. Farmany, Chromatographia 72 (2010) 563 (https://doi.org/10.1365/s10337-010-1660-4)
H. Noorizadeh, A. Farmanya, A. Khosravi, J. Chin. Chem. Soc. 57 (2010) 982 (https://doi.org/10.1002/jccs.201000137)
H. Noorizadeh, A. Farmany, M. Noorizadeh, Quim. Nova 34 (2011) 242 (http://dx.doi.org/10.1590/S0100-40422011000200014)
P. A. Azar, M. Nekoei, R. Siavash, M. R. Ganjali, K. Zare, J. Serb. Chem. Soc. 76 (2011) 891 (https://doi.org/10.2298/JSC100219076A)
R. F. Teofilo, J. P. A. Martins, M. M. C. Ferreira. J. Chemom. 23 (2009) 32 (https://doi.org/10.1002/cem.1192)
OECD, Guidance Document on the Validation of (Quantitative) Structure–Activity Relationship [(Q)SAR] Models, Paris, 2007 (https://doi.org/10.1787/9789264085442-en)
M. B. P. Zanousi, M. Nekoei, M. Mohammadhosseini. J. Essent. Oil-Bear. Plants 20 (2017) 672 (https://doi.org/10.1080/0972060X.2017.1329669)
F. Conforti, F. Menichini, C. Formisano, D. Rigano, F. Senatore, N. A. Arnold, F. Piozzi, Food. Chem. 116 (2009) 898 (https://doi.org/10.1016/j.foodchem.2009.03.044)
A. M. Al-Fakih, Z. Y. Algamal, M. H. Lee, M. Aziz, SAR QSAR Environ. Res. 28 (2017) 691 (http://dx.doi.org/10.1080/1062936X.2017.1375010)
Y. Marrero-Ponce, S. J. Barigye, M. E. Jorge-Rodriguez, T. Tran-Thi-Thu, Chem. Pap. 72 (2018) 57 (https://doi.org/10.1007/s11696-017-0257-x)
A. Nezhadali, M. Nabavi, M. Rajabian, M. Akbarpour, P. Pourali, F. Amini, Beni-Seuf Univ. J. Appl. Sci. 3 (2014) 87 (https://doi.org/10.1016/j.bjbas.2014.05.001)
HyperChemTM. Release 6.02 for Windows, Molecular Modeling system, 2000 (http://www.hyper.com/)
TALETE srl, Dragon (Software for Molecular Descriptors Calculation) version 6.0, 2011 (http://www.talete.mi.it/)
E. Benfenati, J. R. Chrétien, G. Gini, N. Piclin, M. Pintore, A. Roncaglioni, Validation of the models, in Quantitative Structure–Activity Relationships (QSAR) for Pesticide Regulatory Purposes, Elsevier, Amsterdam, 2007, pp. 185–199 (https://doi.org/10.1016/B978-044452710-3/50008-2)
R. W. Kennard, L. A. Stone, Technometrics 11 (1969) 137 (https://doi.org/10.1080/00401706.1969.10490666)
R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Paven, MobyDigs, version 1.1, Copyright TALETE srl, 2009 (http://www.talete.mi.it/)
J. Xu, H. Zhang, L. Wang, G. Liang, L. Wang, X. Shen, W. Xu, Spectrochim. Acta, Part A 76 (2010) 239 (https://doi.org/10.1016/j.saa.2010.03.027)
L. Eriksson, J. Jaworska, A. P. Worth, M. T. D. Cronin, R. M. McDowell, P. Gramatica, Environ. Health Perspect. 111 (2003) 1361 (https://www.ncbi.nlm.nih.gov/pubmed/12896860)
A. Tropsha, P. Gramatica, V. K. Grombar, QSAR Comb. Sci. 22 (2003) 69 (https://doi.org/10.1002/qsar.200390007)
H. Kubinyi, F. A. Hamprecht, T. Mietzner, J. Med. Chem. 41 (1998) 2553 (https://doi.org/10.1021/jm970732a)
A. Golbraikh, A. Tropsha, J. Mol. Graphics Modell. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)
B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1982 (http://dx.doi.org/doi:10.1137/1.9781611970319)
M. Shen, C. Béguin, A. Golbraikh, J.P. Stables, H. Kohn, A. Tropsha, J. Med. Chem. 47 (2004) 2356 (https://pubs.acs.org/doi/abs/10.1021/jm030584q)
R. Kaliszan, Quantitative structure–chromatographic retention relationships, Wiley, New York, 1987 (https://www.osti.gov/biblio/6478095).