Use of GA-ANN and GA-SVM for a QSPR study on aqueous solubility of pesticides

Main Article Content

Amel Bouakkadia
Noureddine Kertiou
Rana Amiri
Youssouf Driouche
https://orcid.org/0000-0001-8024-407X
Djelloul Messadi

Abstract

The partitioning tendency of pesticides, in these study herbicides in particular, into different environmental compartments depends mainly of the physic-chemical properties of the pesticides itself. Aqueous solubility (S) indicates the tendency of a pesticide to be removed from soil by runoff or irrigation and to reach surface water. The experimental procedure determining aqueous solubility of pesticides is very expensive and difficult. QSPR methods are often used to estimate the aqueous solubility of herbicides. The artificial neural network (ANN) and support vector machine (SVM) methods, every time associated with genetic algorithm (GA) selection of the most important variable, were used to develop QSPR models to predict the aqueous solubility of a series 80 herbicides. The values of log S of the studied compounds were well correlated with de descriptors. Considering the pertinent descriptors, a Pearson Correlation Squared (R2) coefficient of 0.8 was obtained for the ANN model with a structure of 5-3-1 and 0.8 was obtained for the SVM model using the RBF function for the optimal parameters values: C = 11.12; σ = 0.1111 and ε = 0.222.

Article Details

How to Cite
[1]
A. Bouakkadia, N. Kertiou, R. Amiri, Y. Driouche, and D. Messadi, “Use of GA-ANN and GA-SVM for a QSPR study on aqueous solubility of pesticides”, J. Serb. Chem. Soc., Oct. 2020.
Section
Theoretical Chemistry

References

P. Gramatica, A. Di Guardo, Chemosphere 47 (2002) 947 (https://doi.org/10.1016/S0045-6535(02)00007-3)

O. C. Hansen, Quantitative Structure-Activity Relationships (QSAR) and Pesticides, Teknologisk Institute, Pesticides Research No. 94 (2004) (https://www2.mst.dk/udgiv/publications/2004/87-7614-434-8/html/helepubl_eng.htm)

M. Zine, A. Bouakkadia, L. Lourici, D. Messadi, J. Serb. Chem. Soc. 84 (2019) 1405 (https://doi.org/10.2298/JSC190306059Z)

HyperchemTM, Release 6.03 for Windows, Molecular Modeling system, 2000 (http://www.hyper.com)

Molegro Data Modeller (MDM), v.2.0. Copyright Molegro (2009) (https://www.scientific-computing.com/press-releases/molegro-data-modeller-v20)

I. N. Levine, Quantum Chemistry. 5thed. New Jersey: Prentice Hall, 2000, p. 626- 739 (ISBN-10: 0136855121)

R. Todeschini, V. Consonni, M. Pavan, Dragon, Software for the Calculation of Molecular Descriptors, Release 5.3 for windows, Milano, 2006 (http://www.talete.mi.it)

R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Pavan, MOBYDIGS, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm, Release 1.1 for Windows, Milano, Italy, 2009 (http://www.talete.mi.it/)

R. Amiri, D. Messadi, A. Bouakkadia, J. Serb. Chem. Soc. 85 (2020) 467 (https://doi.org/10.2298/JSC190610090A)

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, London: Addison Wesley, 1989, p. 89- 94 (https://dl.acm.org/citation.cfm?id=534133)

A. Beheshti, E. Pourbasheer, M. Nekoei,S. Vahdani, J. Saudi Chem. Soc. 28 (2016) 282 (http://dx.doi.org/10.1016/j.jscs.2012.07.019)

J. Xu, H. Zhang, L. Wang, G. Liang, L. Wang, X. Shen, W. Xu, Spectrochim. Acta Part A 76 (2010) 239 (https://doi.org/10.1016/j.saa.2010.03.027)

S. Jothilakshmi, V. N. Gudivada, Handbook of Statistics 35 (2016) 301-340 (http://dx.doi.org/10.1016/bs.host.2016.07.005)

M. Safamirzaei, H. Modarress, M. Mohsen-Nia, Fluid. Phase. Equilibria. 266 (2008) 187 (https://doi.org/10.1016/j.fluid.2008.01.022)

S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Delhi, 2006 (ISBN-13: 978-0023527616)

R. Rojas, Neural Network, Springer-Verlag, Berlin, 1996, p 229-261 (http://page.mi.fu-berlin.de/rojas/neural/)

O. Deeb, M. Drabh, Chem. Biol. Drug. Des. 76 (2010) 255 (https://dx.doi.org/10.4236/aces.2012.21010)

V. N. Vapnik, Statistical Learning Theory. John Wiley & Sons: New York, 1998, p. 375-473 (ISBN: 978-0-471-03003-4)

V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer2000, p. 267-287 (ISBN: 978-1-4757-3264-1)

C. J. Lu, T. S. Lee, C. C. Chiu, Decision. Support. Syst. 47 (2009) 115 (https://doi.org/10.1016/j.dss.2009.02.001)

N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel- based learning methods, Beijing: Publishing House of Electronics Industry, 2005, p. 93-122 (ISBN: 0521 780195).

R. Amiri, D. Messadi, A. Bouakkadia, L. Lourici, Egypt. J. Chem. 62 (2019) 1563 (https://doi.org/ 10.21608/ejchem.2019.4976.1446)

V. Vapnik, The nature of Statistical Learning Theory, Springer, New York, 1995, p. 70-71 (ISBN: 0-387-94559-8).

N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press: Cambridge, UK, 2000, p. 32-42 (ISBN: 0-521-78019-5).

B. Scholkopf, A. Smola, Learning with Kernels, MIT Press: Cambridge, MA, 2002, p.13-17 (ISBN: 0262194759)

A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)

N. Kertiou, A. Bouakkadia, D. Messadi, Res. J. Pharm. Biol. Chem. Sci. 8(6) (2017) 251 (https://www.rjpbcs.com/pdf/2017_8(6)/[29].pdf)

A. Bouakkadia,Y. Driouche, N. Kertiou, D. Messadi, Int. J. Saf. Secur. Eng. 10 (2020) 389 (https://doi.org/10.18280/IJSSE.100311)

A. Bouakkadia, H. Haddag, N. Bouarra, D. Messadi, Synthèse: Revue des Sciences et de la Technologie 32 (2016) 12 (in French) (https://www.ajol.info/index.php/srst/issue/view/13942)

J. Gasteiger, J. Sadowski, J Schuur, P. Selzer, L. Steinhauer, V. Steinhauer, J. Chem. Inf. Comput. Sci. 36 (1996) 1030 (https://doi.org/10.1021/CI960343+)

J. Schuur, P. Selzer, J. Gasteiger, J. Chem. Inf. Comput. Sci. 36 (1996) 334 (https://doi.org/10.1021/CI950164C)

W. J. Wang, Z. B. Xu, W. Z. Lu, X. Y. Zhang, Neurocomputing 55 (2003) 643 (https://doi.org/10.1016/S0925-2312(02)00632-X)

O. Deeb, M. Goodarzi, Mol. Phys. 108 (2010) 181 (https://doi.org/10.1080/00268971003604575)