Quantitative structure–property relationship studies for the prediction of the vapor pressure of volatile organic compounds

Mounia Zine, Amel Bouakkadia, Leila Lourici, Djelloul Messadi

Abstract


A theoretical model (QSPR) using multiple linear regression analysis for predicting the vapor pressure (pv) of volatile organic compounds (VOCs) has been developed. A series of 51 compounds were analyzed by multiple lin­ear regression analysis. First, the data set was separated arbitrarily into a train­ing set (39 chemicals) and a test set (12 chemicals) for statistical external valid­ation. A four-dimensional model was developed using as independent variables theoretical descriptors derived from Dragon software when applying the GA (genetic algorithm)–VSS (variable subset selection) procedure. The obtained model was used to predict the vapor pressure of the test set compounds, and an agreement between experimental and predicted values was verified. This model, with high statistical significance (R2 = 0.9090, Q2LOO = 0.8748, Q2ext = 0.8307, s = 0.24), could be used adequately for the prediction and description of the log pv value of other VOCs. The applicability domain of MLR model was investigated using a William‘s plot to detect outliers and outsides compounds.


Keywords


molecular descriptors; VOCs; log pv; multiple linear regression

References


V. Cirimele, M. Etter, M. Villian, P. Kintez, Ann. Toxicol. Anal. 20 (2008) 67 (https://doi.org/10.1051/ata/2009002)

S. Chtita, R. Hmamouchi, M. Larif, M. Ghamali, M. Bouachrine, T. Lakhlifi, J. Taibah Univ. Sci. 10 (2016) 868 (https://doi.org/10.1016/j.jtusci.2015.04.007)

J. Akbar, S. Iqbal, F. Batool, A. Karim , K. W. Chan, Int. J. Mol. Sci. 13 (2012) 15387 (https://doi.org/10.3390/ijms131115387)

D. Mackay, W. Y. Shiu, K. C. Ma, S. C. Lee, Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd ed., CRC Press Inc., Boca Raton, FL, 2006 (https://doi.org/10.1201/9781420044393)

HyperChem 6.03 Package, Hypercube, Inc., Gainesville, FL, 1999; software available at: http://www.hyper.com

Talete Srl. Dragon for Windows (Software for Molecular Descriptor Calculation) Version 5.5, Milano, 2007, software available at http://www.talete.mi.it/

R. Leardi, R. Boggia, M. Terrile, J. Chemom. 6 (1992) 267 (https://doi.org/10.1002/cem.1180060506)

R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Pavan, MOBYDIGS, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm. Release 1.1 for windows, Milano, 2009 (http://www.talete.mi.it/)

L. Eriksson, J. Jaworska, A. Worth, M. McCronin, R. M. Dowell, P. Gramatica, Environ. Health. Perspect. 111 (2003) 1361 (https://doi.org/10.1289/ehp.5758)

A. Tropscha, P. Gramatica, V. K. Gombar, QSAR Comb. Sci. 22 (2003) 70 (https://doi.org/10.1002/qsar.200390007)

H. Kubinyi, F. A. Hamprecht, T. Mietzner, J. Med. Chem. 41 (1998) 2553 (https://doi.org/10.1021/jm970732a)

A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)

L. F. Ramsey, W. D. Schafer, The Statistical Sleuth, Wadsworth Publishing Company, Belmont, CA, 1997 (https://ir.library.oregonstate.edu/downloads/j3860c13r)

A. J. Holder, D. M. Yourtee, D. A. White, A. G. Galaros, R. J. Smith Chain, J. Comput. Aided. Mol. Des. 17 (2003) 223 (https://doi.org/10.1023/A:1025382226037)

S. Chatterjee, A. S. Hadi, B. Price, Analysis of collinear data. In: Regression analysis by example, 4th ed., S. Chatterjee, A. S. Hadi, Eds., Wiley, New York, 2006, pp.. 221–258 (https://doi.org/10.1002/0470055464.ch9)

A. Tropsha, A. Golbraikh, Curr. Pharm. Des. 13 (2007) 3494 (https://doi.org/10.2174/138161207782794257)

W. Li, Y. Tang, Y. L. Zheng, Z. B. Qiu, Bioorg. Med. Chem. 14 (2006) 601 (https://doi.org/10.1016/j.bmc.2005.08.052)

R. Guha, D. T. Stanton, P. C. Jurs, J. Chem. Inf. Model. 45 (2005) 1109 (https://pubs.acs.org/doi/abs/10.1021/ci050110v).




DOI: https://doi.org/10.2298/JSC190306059Z

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)