Linear and nonlinear quantitative structure property relationships modeling of aqueous solubility of phenol derivatives

Soumaya Kherouf, Nabil Bouarra, Amel Bouakkadia, Djelloul Messadi


Quantitative structure-solubility relationships (QSSR) considered as a type of

Quantitative structure-property relationships (QSPR) studies, where aqueous solubility of chemicals is related to chemical structure. In the present work multiple linear regression (MLR) and artificial neural network (ANN) techniques were used for quantitative structure-solubility relationship (QSSR) studies of water solubility of 68 phenols (phenol and its derivatives) based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm (GA) to select the descriptors that resulted in the best fitted models. After the descriptor selection, multiple linear regression (MLR) was used to construct linear QSSR model. The =91.0%, LOO= 89.33%, s =0.340 values of the model developed by MLR showed a good predictive capability for logS values of phenol and its derivatives. the results of MLR model were compared with those of the ANN model. the comparison showed that the = 94.99%), s = 0.245 of ANN were higher and lower, respectively, which illustrated ANN present an excellent alternative to develop QSSR model for the logS values of phenols than MLR.


QSPR; aqueous solubility; phenols; multiple linear regression; artificial neural

Full Text:

PDF (1,855 kB)


J. Devillers, SAR. QSAR. Environ.Res.15 (2004) 237.(

Y. B. Zang, Chin, Agric. Sci. Bull. 28 (2012) 282(

P. R. Zhan, H. T. Wang, Z. X. Chen, J. Agro-Environ. Sci. 27(2008) 801(

J. Micha Lowicz , R. OżadowiczWirgiliuszDuda,Water. Air. Soil. Poll. 16(2005)205(

R. Gozalbes, A. Pineda-Lucena, Bioorgan. Med. Chem.18(2010) 7078(

X.J. Yao,M.C. Liu,X.Y. Zhang, Z.D. Hu, B.T Fan, Anal.Chim. Acta.462 (2002)101(

M.St.J.Warne, D.W.Connel, D.W.Hawker, G.Schüürmann.chemosphere,21 (1990) 877 (

C. Catana, H. Gao, C. Orrenius, P. F. W. Stouten,J. Chem. Inf. Model. 45 (2005) 170 (

Z.Garkani-Nejad, M.Ahmadvand.Sep.Sci.Technol.46 (2011) 1034 (

E. Benfenati, J. R. Chrétien, G. Gini, N. Piclin, M. Pintore, A. Roncaglioni, Validation of the models. In Quantitative Structure-Activity Relationships (QSAR) for Pesticide Regulatory Purposes, Elsevier, (2007). p. 185-199. (

D. Mackay, W. Y. Shiu, K.C. Ma, S.C. Lee, Handbook of physical-chemical properties and environmental fate for organic chemicals Second edition, CRC Press Inc, Boca Raton, USA, 2006(

HyperChem6.03 Package. Hypercube, Inc., Gainesville, Florida, USA, 1999; softwareavailable at: (

TaleteSrl. Dragon forwindows (SoftwareforMolecularDescriptorCalculation)Version 5.5 Milano, Italy, 2007; software available at: (

J. E. Jackson, A User’s Guide to Principal Component, Wiley, New York, United States, 1991(

R. Kennard, L.A. Stone, Technometrics.11(1969) 137 (

P. Gramatica, N. Chirico, E. Papa,S. Cassani, S. Kovarich, QSARINS, Software for the Development and validation of QSAR MLR Models, available on request in (

P. Gramatica, N. Chirico, E. Papa, S. Kovarich, S. Cassani, S,J.Comput. Chem. Software news and updates,34(2013) 2121(

J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinheim,New York, USA, 1999( Networks in Chemistry and Drug Design%3A An Introduction%2C 2nd Edition-p-9783527297795)

S. Haykin, Neural Networks. A Comprehensive Foundation,Perarson Prentice Hall: New Delhi, India, 2006(ISBN-13: 978-0023527616 )

D.E. Rumelhart, G.E. Hinton, R.J. Williams,Nature.323(1986) 33(

OECD. Guidance Document on the Validation of (Quantitative) Structure–Activity Relationships [(Q)SAR ] Models. Organisation for Economic Co-Operation and Development, Paris, France, 2007(

A. Tropsha, P. Gramatica, V. K. Gombar,QSAR. Comb. Sci.22 (2003) 70(

P. Gramatica, Mol. Inf; 33(2014)311(

G. Schüürmann, R. Ebert, J. Chen, B. Wang, R. Kühne,J. Chem. Inf. Model.48(2008) 2140(

V. Consonni, D. Ballabio,R. Todeschini,J. Chem. Inf. Model.49(2009)1669 (

V. Consonni, D. Ballabio, R. Todeschini,J.Chemom.24(2010) 194(

L. I. Lin, Biometrics.45(1989)255(

N. Chirico, P. Gramatica,J. Chem. Inf. Model.51(2011)2320(

T.I. Netzeva,A. P. Worth,T. Aldenberg,R. Benigni, M. T. D. Cronin,P Gramatica, J. S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. W.Roberts, T. W. Schultz, D. T. Stanton, J. J. M. Van de Sandt, W. Tong, G. Veith, C. Yang, ATLA.Altern. Lab. Anim.33(2005)155(

N. Chirico, P. Gramatica. J. Chem. Inf. Model.52(2012)2044(

G. R. Famini, C. A. Penski, L. Y. Wilson, J. Phys.Org.Chem. 5(1992)395(

J. Xu, H. Liu, W. Li, H. Zou, W. Xu, Macromol.Theory. Simul.17(2008) 470(

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature.323(1986) 33(

F. Zheng, E. Bayram, S. P. Sumithran, J. T. Ayers, C. Zhan, J. D.Schmitt, L. P. Dwoskin, P. A. Crooks, Bioorg. Med. Chem.14 (2006)3017(

R. Guha, P. C. Jurs, J. Chem. Inf. Model.45(2005) 800( 10.1021/ci050022a)

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)