Predicting retention indices of PAHs in reversed-phase liquid chromatography: A quantitative structure retention relationship approach

Nabil Bouarra, Nawel Nadji, Loubna Nouri, Amel Boudjemaa, Khaldoun Bachari, Djelloul Messadi

Abstract


: In this work, the liquid chromatography retention time in monomeric and polymeric stationary phases of PAHs was investigated. Quantitative structure retention relationship approach has been successfully performed. At first, 3224 molecular descriptors were calculated for the optimized PAHs structure using Dragon software. Afterwards, the modelled dataset was divided using the CADEX algorithm into two subsets for internal and external validation. The genetic algorithm-based on a multiple linear regression was used for feature selection of the most significant descriptors and the model development. The selected models included five descriptors: nCIR, GGI3, GGI4, JGT, and DP14 were used for the monomeric column and nR10, EEig01x, L1m, H5v, HATS6v were introduced for the polymeric column. Robustness and predictive performance of the suggested models were verified by both internal and external statistical validation. The good quality of the statistical parameters indicates the stability and predictive power of the suggested models. This study demonstrated that the suitability of the established models in the prediction of liquid chromatographic retention indices of PAHs.


Keywords


Molecular descriptors; genetic algorithm; multiple linear regression; prediction.

Full Text:

PDF (1,664 kB)

References


M. Pogorzelec, K. Piekarska, Sci. Total Environ. 631 (2018)1431 (https://dx.doi.org/10.1016/j.scitotenv.2018.03.105)

H. I. Abdel-Shafy, M. S. M. Mansour, Egypt. J. Petrol. 25 (2016) 107 (https://dx.doi.org/10.1016/j.ejpe.2015.03.011)

N. E. Kaminski, B. L. Faubert Kaplan, M. P. Holsapple, Casarett and Doull’s Toxicology, the basic science of poisons, Curtis D. Klaassen (Ed.), Mc-Graw Hill, Inc: New York, 2008, p. 1280 (ISBN: 978-0071470513)

R. Put, Y. Vander Heyden, Anal. Chim. Acta 602(2007) 164 (https://dx.doi.org/10.1016/j.aca.2007.09.014)

K. D. Bartle,M. L Lee,S. A. Wise, Chem. Soc. Rev. 10 (1981) 113 (https://dx.doi.org/10.1039/CS9811000113).

EPA Test Method, Polynuclear Aromatic Hydrocarbons- Method 610, US Environmental Protection Agency, Environmental Monitoring and Support Laboratory, 1982 (https://www.epa.gov/sites/production/files/2015-10/documents/method_610_1984.pdf)

R. Kaliszan, Chem. Rev. 107 (2007) 3212 (https://dx.doi.org/10.1021/cr068412z)

N.Goudarzi, D. Shahsavani,F. Emadi-Gandaghi, M. Arab Chamjangali, J. Chromatogr. A. 1333 (2014) 25 (https://dx.doi.org/10.1016/j.chroma.2014.01.048)

M. M. C. Ferreira, Chemosphere.44 (2001) 125 (https://dx.doi.org/10.1016/S0045-6535(00)00275-7)

F. A. L. Ribeiro, M. M. C. Ferreira, J. Mol. Struct: Theochem. 663 (2003) 109 (https://dx.doi.org/10.1016/j.theochem.2003.08.107 )

T. Moon, M. W. Chi, S. J. Park, C. N. Yoon, J. Liq. Chrom. Rel. Technol. 26 (2003) 2987 (https://dx.doi.org/10.1081/JLC-120025413)

K. A. Lippa, L. C. Sander, S. A. Wise, Anal. Bioanal. Chem. 378 (2004) 365 (https://dx.doi.org/10.1007/s00216-003-2419-7)

L. C. Sander, S. A.Wise, J. Chrom. Lib.57(1995) 337 (https://dx.doi.org/10.1016/S0301-4770(08)60622-3)

M. Popl, V. Dolansky,J.Mostecky, J. Chromatogr. 117 (1976) 117 (https://doi.org/10.1016/S0021-9673(00)81072-9)

National institute of standards and technology. https://webbook.nist.gov/chemistry/

A. D. Becke, J. Chem. Phys. 1993, 98, 5648 (https://dx.doi.org/10.1063/1.464913)

TaleteSrl. Dragon for windows (Software for Molecular Descriptor Calculation), version 5.5, Milano, 2007; software available at: http://www.talete.mi.it

R. W. Kennard, L. A. Stone, Technometrics. 11 (1969) 137 (https://dx.doi.org/10.1080/00401706.1969.10490666)

P. Gramatica, N. Chirico, E. Papa, S. Cassani, S. Kovarich, QSARINS, Software for the Development and validation of QSAR MLR Models, available on request at http://www.qsar.it

R. Todeschini, A. Maiocchi, V. Consonni, Chemom. Intell. Lab. Sys.46 (1999) 13 (https://dx.doi.org/10.1016/S0169-7439(98)00124-5)

P. Gramatica, QSAR Comb. Sci. 26 (2007) 694 (https://dx.doi.org/10.1002/qsar.200610151)

N. Chirico, P. Gramatica, J. Chem. Inf. Model. 51 (2011) 2320 (https://dx.doi.org/10.1021/ci200211n)

D. W. Osten. J. Chemom. 2 (1998) 39 (https://dx.doi.org/10.1002/cem.1180020106)

N. Chirico, P. Gramatica, J. Chem. Inf. Model. 52 (2012) 2044 (https://dx.doi.org/10.1021/ci300084j)

R. Kiralj, M. M. C. Ferreira, J. Braz. Chem. Soc. 20 (2009) 770 (https://dx.doi.org/10.1590/S0103-50532009000400021)

P. Gramatica, Mol. Inf. 33 (2014) 311 (https://dx.doi.org/ 10.1002/minf.201400030)

G. Schüürmann, R. Ebert, J. Chen, B. Wang, R. Kühne. J. Chem. Inf. Model. 48 (2008) 2140 (https://doi.org/10.1021/ci800253u)

V. Consonni, D. Ballabio, R. Todeschini, J. Chem. Inf. Model. 49 (2009) 1669 (https://dx.doi.org/10.1021/ci900115y)

V. Consonni, D. Ballabio, R. Todeschini, J. Chemom. 24 (2010) 194 (https://dx.doi.org/10.1002/cem.1290)

L. I. Lin, Biometrics. 45 (1989) 255 (https://dx.doi.org/10.2307/2532051)

A. O. Aptula, N. G. Jeliazkova, T. W. Schultz, M. T. D. Cronin, QSAR Comb. Sci. 24 (2005) 385 (https://dx.doi.org/10.1002/qsar.200430909)

A. Tropsha, P. Gramatica, V. K. Gombar, QSAR Comb. Sci. 22 (2003) 69 (https://dx.doi.org/10.1002/qsar.200390007)

L. Eriksson, J. Jaworska, A. P. Worth, M. T. D. Cronin,R. M. McDowell, P. Gramatica. Environ. Health Perspect. 111 (2003)1361(https://dx.doi.org/10.1289/ehp.5758)

S. Kherouf, N. Bouarra,A. Bouakkadia, D. Messadi, J. Serb. Chem. Soc. 84 (2019) 575 (https://dx.doi.org/10.2298/JSC180820016K)

S. Chatterjee, A. Hadi, B. Price, Regression Analysis by Examples, Wiley-VCH, New York, USA, 2000, p. 368 (ISBN-13: 978-0471319467)

V. Consonni, R. Todeschini, M. Pavan. J. Chem. Inf. Comput. Sci. 42 (2002) 682 (https://dx.doi.org/10.1021/ci015504a)

R. Todeschini, P. Gramatica, Quant. Struct.‐Act. Relat. 16 (1997) 113 (https://dx.doi.org/10.1002/qsar.19970160203)

R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, New York, USA, 2009, p.1257 (ISBN-13: 978-3527318520 )

J. Galvez, R. Garcia-Domenech, J. V. de Julian-Ortiz, R. Soler. J. Chem. Inf. Comput. Sci. 35 (1995) 272(https://dx.doi.org/10.1021/ci00024a017)

M. Randic, G. Krilov. Chem. Phys. Lett. 272 (1997) 115 (https://dx.doi.org/10.1016/S0009-2614(97)00447-8)




DOI: https://doi.org/10.2298/JSC200219019B

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)