Predicting retention indices of PAHs in reversed-phase liquid chromatography: Quantitative structure retention relationship approach
Main Article Content
Abstract
In this work, the liquid chromatography retention time in monomeric and polymeric stationary phases of PAHs was investigated. Quantitative structure retention relationship approach has been successfully performed. At first, 3224 molecular descriptors were calculated for the optimized PAHs structure using Dragon software. Afterwards, the modelled dataset was divided using the CADEX algorithm into two subsets for internal and external validation. The genetic algorithm-based on a multiple linear regression was used for feature selection of the most significant descriptors and the model development. The selected models with five descriptors: nCIR, GGI3, GGI4, JGT and DP14 were used for the monomeric column and nR10, EEig01x, L1m, H5v and HATS6v were introduced for the polymeric column. Robustness and predictive performance of the suggested models were verified by both internal and external statistical validation. The good quality of the statistical parameters indicates the stability and predictive power of the suggested models. This study demonstrated the suitability of the established models in the prediction of liquid chromatographic retention indices of PAHs.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Pogorzelec, K. Piekarska, Sci. Total Environ. 631 (2018)1431 (https://dx.doi.org/10.1016/j.scitotenv.2018.03.105)
H. I. Abdel-Shafy, M. S. M. Mansour, Egypt. J. Petrol. 25 (2016) 107 (https://dx.doi.org/10.1016/j.ejpe.2015.03.011)
N. E. Kaminski, B. L. Faubert Kaplan, M. P. Holsapple, Casarett and Doulls Toxicology, the basic science of poisons, C. D. Klaassen (Ed.), Mc-Graw Hill, Inc., New York, 2008, p. 1280 (ISBN: 978-0071470513)
R. Put, Y. Vander Heyden, Anal. Chim. Acta 602(2007) 164 (https://dx.doi.org/10.1016/j.aca.2007.09.014)
K. D. Bartle,M. L Lee,S. A. Wise, Chem. Soc. Rev. 10 (1981) 113 (https://dx.doi.org/10.1039/CS9811000113).
EPA Test Method, Polynuclear Aromatic Hydrocarbons- Method 610, US Environmental Protection Agency, Environmental Monitoring and Support Laboratory, 1982 (https://www.epa.gov/sites/production/files/2015-10/documents/method_610_1984.pdf)
R. Kaliszan, Chem. Rev. 107 (2007) 3212 (https://dx.doi.org/10.1021/cr068412z)
N.Goudarzi, D. Shahsavani,F. Emadi-Gandaghi, M. Arab Chamjangali, J. Chromatogr., A 1333 (2014) 25 (https://dx.doi.org/10.1016/j.chroma.2014.01.048)
M. M. C. Ferreira, Chemosphere 44 (2001) 125 (https://dx.doi.org/10.1016/S0045-6535(00)00275-7)
F. A. L. Ribeiro, M. M. C. Ferreira, J. Mol. Struct.: Theochem. 663 (2003) 109 (https://dx.doi.org/10.1016/j.theochem.2003.08.107 )
T. Moon, M. W. Chi, S. J. Park, C. N. Yoon, J. Liq. Chromatogr. Rel. Technol. 26 (2003) 2987 (https://dx.doi.org/10.1081/JLC-120025413)
K. A. Lippa, L. C. Sander, S. A. Wise, Anal. Bioanal. Chem. 378 (2004) 365 (https://dx.doi.org/10.1007/s00216-003-2419-7)
L. C. Sander, S. A.Wise, J. Chromatogr. Libr. 57(1995) 337 (https://dx.doi.org/10.1016/S0301-4770(08)60622-3)
M. Popl, V. Dolansky,J.Mostecky, J. Chromatogr. 117 (1976) 117 (https://doi.org/10.1016/S0021-9673(00)81072-9)
National institute of standards and technology, https://webbook.nist.gov/chemistry/
A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://dx.doi.org/10.1063/1.464913)
TaleteSrl. Dragon for windows (Software for Molecular Descriptor Calculation), version 5.5, Milano, 2007 (software available at: http://www.talete.mi.it)
R. W. Kennard, L. A. Stone, Technometrics 11 (1969) 137 (https://dx.doi.org/10.1080/00401706.1969.10490666)
P. Gramatica, N. Chirico, E. Papa, S. Cassani, S. Kovarich, QSARINS, Software for the Development and validation of QSAR MLR Models (available on request at http://www.qsar.it)
R. Todeschini, A. Maiocchi, V. Consonni, Chemometr. Intell. Lab. Sys. 46 (1999) 13 (https://dx.doi.org/10.1016/S0169-7439(98)00124-5)
P. Gramatica, QSAR Comb. Sci. 26 (2007) 694 (https://dx.doi.org/10.1002/qsar.200610151)
N. Chirico, P. Gramatica, J. Chem. Inf. Model. 51 (2011) 2320 (https://dx.doi.org/10.1021/ci200211n)
D. W. Osten. J. Chemometr. 2 (1998) 39 (https://dx.doi.org/10.1002/cem.1180020106)
N. Chirico, P. Gramatica, J. Chem. Inf. Model. 52 (2012) 2044 (https://dx.doi.org/10.1021/ci300084j)
R. Kiralj, M. M. C. Ferreira, J. Braz. Chem. Soc. 20 (2009) 770 (https://dx.doi.org/10.1590/S0103-50532009000400021)
P. Gramatica, Mol. Inf. 33 (2014) 311 (https://dx.doi.org/ 10.1002/minf.201400030)
G. Schüürmann, R. Ebert, J. Chen, B. Wang, R. Kühne. J. Chem. Inf. Model. 48 (2008) 2140 (https://doi.org/10.1021/ci800253u)
V. Consonni, D. Ballabio, R. Todeschini, J. Chem. Inf. Model. 49 (2009) 1669 (https://dx.doi.org/10.1021/ci900115y)
V. Consonni, D. Ballabio, R. Todeschini, J. Chemometr. 24 (2010) 194 (https://dx.doi.org/10.1002/cem.1290)
L. I. Lin, Biometrics 45 (1989) 255 (https://dx.doi.org/10.2307/2532051)
A. O. Aptula, N. G. Jeliazkova, T. W. Schultz, M. T. D. Cronin, QSAR Comb. Sci. 24 (2005) 385 (https://dx.doi.org/10.1002/qsar.200430909)
A. Tropsha, P. Gramatica, V. K. Gombar, QSAR Comb. Sci. 22 (2003) 69 (https://dx.doi.org/10.1002/qsar.200390007)
L. Eriksson, J. Jaworska, A. P. Worth, M. T. D. Cronin,R. M. McDowell, P. Gramatica. Environ. Health Perspect. 111 (2003)1361(https://dx.doi.org/10.1289/ehp.5758)
S. Kherouf, N. Bouarra,A. Bouakkadia, D. Messadi, J. Serb. Chem. Soc. 84 (2019) 575 (https://dx.doi.org/10.2298/JSC180820016K)
S. Chatterjee, A. Hadi, B. Price, Regression Analysis by Examples, Wiley-VCH, New York, 2000, p. 368 (ISBN-13: 978-0471319467)
V. Consonni, R. Todeschini, M. Pavan. J. Chem. Inf. Comput. Sci. 42 (2002) 682 (https://dx.doi.org/10.1021/ci015504a)
R. Todeschini, P. Gramatica, Quant. Struct.‐Act. Relat. 16 (1997) 113 (https://dx.doi.org/10.1002/qsar.19970160203)
R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, New York, 2009, p.1257 (ISBN-13: 978-3527318520)
J. Galvez, R. Garcia-Domenech, J. V. de Julian-Ortiz, R. Soler, J. Chem. Inf. Comput. Sci. 35 (1995) 272(https://dx.doi.org/10.1021/ci00024a017)
M. Randic, G. Krilov, Chem. Phys. Lett. 272 (1997) 115 (https://dx.doi.org/10.1016/S0009-2614(97)00447-8).