Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes Scientific paper

Main Article Content

Salma Al-Zahrani
Violeta Jevtović
Khalaf Alenezi
Hani Moll
Ashanul Haque
Dragoslav Vidović


The growing global demand for renewable energy sources has pushed renewable, green energy sources to the forefront, among which the production of hydrogen gas from water occupies a significant place. To realize this goal, researchers across the globe are developing various systems that could swiftly catalyze the hydrogen evolution reaction (HER) in the highest possible yield. In the present work, the electrocatalytic HER performances of pyridoxal semi­carbazone- and thiosemicarbazone-based Cu(II) complexes, i.e., ([Cu(PLSC)Cl2] and [Cu(PLTSC-H)H2O]Br·H2O) are reported. It has been unambiguously demonstrated that the complexes exhibit enviable level of HER catalytic act­ivity. The catalytic activity of the complexes was not only the function of cen­tral metal but it was also controlled by the nature of the coor­dinating ligand.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
S. Al-Zahrani, V. Jevtović, K. Alenezi, H. Moll, A. Haque, and D. Vidović, “Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 3, pp. 345–354, Oct. 2021.


J. Zhu, L. Hu, P. Zhao, L. Lee, K. Wong, Chem. Rev. 120 (2020) 851 (https://doi.org/10.1021/acs.chemrev.9b00248)

J. Yu, Y. Dai, Q He, D. Zhao, Z. Shao, M. Ni, MRE 120 (2021)100024 (https://doi.org/10.1016/j.matre.2021.100024

Y. She, Z. Lyu, M. Zhao, R. Chen, Q. Nguyen, Y. Xia, Chem. Rev. 121 (2021) 649 (https://doi.org/10.1021/acs.chemrev.0c00454)

Z. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian,Y. Chen, Energy Environ. Sci. 13 (2020) 3185 (https://doi.org/10.1039/D0EE01856B)

S. Roy, Z. Huang, A. Buhunia, A. Castner, A. Gupta, X. Zou, S. Ott, J. Am. Chem. Soc. 141 (2019) 15942 (https://doi.org/10.1021/jacs.9b07084)

C. Chen, T. Chiou, H. Chang, W. Li, C. Tung, W. Liaw, Sustain. Energy Fuels 3 (2019) 2205 (https://doi.org/10.1039/C9SE00371A)

N. Cheng, S. Stambula, D. Wang, M. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. Sham, L. Liu, G. Botton, X. Sun, Nat. Commun. 7 (2016) 13638 (https://doi.org/10.1038/ncomms13638)

H. Tang, E. N. Brothers, C. A. Grapperhaus, M. B. Hall, ACS Catal. 10 (2020) 3778 (https://doi.org/10.1021/acscatal.9b04579)

H. Shao, S. K. Muduli, P. D. Tran, H. S. Soo, Chem. Commun. 52 (2016) 2948 (https://doi.org/10.1039/C5CC09456A)

A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, C. A. Grapperhaus, J. Am. Chem. Soc. 138, 25 (2016) 7844 (https://doi.org/10.1021/jacs.6b04441)

V. Jevtovic, Cu, Fe, Ni and V Complexes with Pyridoxal Semicarbazones, Lap Lambert Publication, Saarbrücken, 2010 (https://www.amazon.com/complexes-pyridoxal-semicarbazones-properties-structural/dp/3838351339)

V. M. Leovac, V. S. Jevtovic, L. S. Jovanovic,G. A. Bogdanovic, J. Serb. Chem. Soc. 70 (2005) 423 (https://doi.org/10.2298/JSC0503393L)

S.AShidhani, M. Al Bouromi, S. Al Ameri, S. Al Ghawi, V. Jevtovic, Am. J. Chem. 6 (2016) 8 (https://doi.org/10.5923/j.chemistry.20160601.02)

V. Jevtovic, D. Vidovic, Acta Cryst., E 66(Pt.4) (2010) 408 (https://doi.org/10.1107/S1600536810003570)

V. Jevtovic, D. Cvetkovic, D. Vidovic, JICS 8 (2011)727 (https://doi.org/10.1007/BF03245904)

D. Vidovic, A. Radulovic,V. Jevtovic, Polyhedron 30 (2011) 16 (https://doi.org/10.1016/j.poly.2010.09.022)

N. Knezevic,V. Leovac,V. Jevtovic, S. Grguric-Sipka, T. Sabo, Inorg. Chem. Comm. 6 (2003) 561 (https://doi.org/10.1016/S1387-7003(03)00041-8)

R. Manikandan, P. Anitha, G. Prakash, P. Vijayan, P. Viswanathamurthi, Polyhedron 81 (2014) 619 (https://doi.org/10.1016/j.poly.2014.07.018)

R. Manikandan, P. Anitha, P. Viswanathamurthi, J. G. Maleck, Polyhedron 119 (2016) 300 (https://doi.org/10.1016/j.poly.2016.09.005)

R. Manikandana, P. Anithaa, G. Prakasha, P. Vijayana, P. Viswanathamurthi, R. Jay Butcher,J. G. Malecki, J. Mol. Catal., A 398 (2015) 312 (https://doi.org/10.1016/j.poly.2016.09.005)

J. Pisk, B. Prugovecki, D. Matkovic-Calogović, R. Poli, D. Agustin ,V. Vrdoljak, Polyhedron 33 (2012) 441 (https://doi.org/10.1016/j.poly.2011.12.003)

D. Perrin, W. Armarego, D. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, 1988 (https://doi.org/10.1002/recl.19881071209)

V. Jevtovic, K. Alenezi, H. El Moll, A. Haque, J. Humaidi, S. A. Al-Zahrani, D. Vidovic, Int. J. Electrochem. Sci. 16 (2021) 210731 (https://doi.org/10.20964/2021.07.61)

T. Liu, D. L. Du Bois, R. M. Bullock, Nat. Chem. 5 (2013) 228 (https://doi.org/10.1038/nchem.1571)

B. H. Solis, S. Hammes-Schiffer, Inorg. Chem. 53 (2014) 6427 https://doi.org/10.1021/ic5002896

M. Drosou, F. Kamatsos, C. A. Mitsopoulou, Inorg. Chem. Front. 7 (2020) 37 (https://doi.org/10.1039/C9QI01113G).

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.