Synthesis and biological activity of alkylthio and arylthio derivatives of tert-butylquinone Scientific paper

Main Article Content

Jelena Đorđević
https://orcid.org/0000-0003-1771-8353
Stoimir Kolarević
https://orcid.org/0000-0002-6938-8803
Jovana Jovanović Marić
https://orcid.org/0000-0003-1635-7787
Mariana Oalđe Pavlović
https://orcid.org/0000-0001-9338-7811
Dušan Sladić
https://orcid.org/0000-0002-1000-9813
Irena Novakovic
https://orcid.org/0000-0001-9881-1204
Branka Vuković-Gačić
https://orcid.org/0000-0001-8767-1912

Abstract

Biological activity of 2-tert-butyl-1,4-benzoquinone (TBQ) and its deri­vatives, 2-tert-butyl-5-(2-propylthio)-1,4-benzoquinone, 2-tert-butyl-5-(propyl­thio)-1,4-benzoquinone, 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzo­quinone, 2-tert-butyl-5-(phenylthio)-1,4-benzoquinone and 2-tert-butyl-6-(phe­nylthio)-1,4-benzo­quinone, were tested for their antioxidant, antibacterial, toxic, cytotoxic and geno­toxic potential. Using the DPPH test, all derivatives showed good antioxidant act­ivity, better than ascorbic acid, and the 2-tert-butyl-5-(propylthio)-1,4-benzo­quin­one derivative showed the strongest effect. Better antibacterial potential was obs­erved against Gram-positive bacteria in the broth microdilution method in which the 2-tert-butyl-5-(phenylthio)-1,4-benzoquinone derivative showed the strongest activity (MIC = 15.6 µM). The results of toxicity tests, using the Brine shrimp test, indicated that the deri­vatives lose their toxic potential compared to TBQ, except for 2-tert-butyl-6-(phenylthio)-1,4-benzoquinone, which showed a 3 times stronger effect. Cyto­tox­icity was assessed by the MTT assay in 24 and 72 h treatments in MRC-5, HS 294T and A549 cell lines in threefold decreasing gradient (11, 33 and 100 μM). Modifications potentiate the cytotoxic effect, and the strongest effect was observed with the 2-tert-butyl-5,6-(ethylendithio)-1,4-benzoquinone derivative. In addition, the genotoxic potential was examined in the MRC-5 cell line using the comet assay. All tested derivatives of TBQ showed a genotoxic effect at all applied subtoxic concentrations. In general, the chemical modifications of TBQ enhanced its biological activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Đorđević, “Synthesis and biological activity of alkylthio and arylthio derivatives of tert-butylquinone: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 11, pp. 1245–1258, Sep. 2022.
Section
Biochemistry & Biotechnology

Funding data

References

A. Upadhyay, Genes Dis. 8 (2021) 655 (https://doi.org/10.1016/j.gendis.2020.09.002)

IARC, Press Release 263 (2018) (https://www.iarc.who.int/wp-content/uploads/2018/09/pr263_E.pdf) (accessed on March 4, 2022)

J. Khazir, B. A. Mir, S. A. Mir, D. Cowan, J. Asian Nat. Prod. Res. 15 (2013) 764 (https://doi.org/10.1080/10286020.2013.798314)

R. G. Amaral, S. A. dos Santos, L. N. Andrade, P. Severino, A. A. Carvalho, Clin. Oncol 4 (2019) 1562 (https://www.clinicsinoncology.com/open-access/natural-products-as-treatment-against-cancer-a-historical-and-current-vision-1716.pdf)

J. T. Jimenez, M. Sturdíkova, E. Sturdík, Acta Chim. Slov. 2 (2009) 63 (http://acs.chtf.stuba.sk/papers/acs_0047.pdf)

E. Batke, R. Ogura, P. Vaupel, K. Hummel, F. Kallinowski, M. J. Gasić, H. C. Schröder, W. E. G. Müllerm, Cell Biochem. Funct. 6 (1988) 123 (https://doi.org/10.1002/cbf.290060207)

M. L. Ferrándiz, M. J. Sanz, G. Bustos, M. Payá, M. J. Alcaraz, S. de Rosa, Eur. J. Pharmacol. 253 (1994) 75 (https://doi.org/10.1016/0014-2999(94)90759-5)

M. Tsoukatou, J. P. Maréchal, C. Hellio, I. Novaković, S. Tufegdzic, D. Sladić, M. J. Gašić, A. S. Clare, C. Vagias, V. Roussis, Molecules 12 (2007) 1022 (https://doi.org/10.3390/12051022)

N. Aktaş, B. Gözcelioğlu, Y. Zang, W.-H. Lin, B. Konuklugil, FABAD J. Pharm. Sci. 35 (2010) 119 (http://dergi.fabad.org.tr/pdf/volum35/issue3/119-123.pdf)

T. Božić, I. Novaković, M. J. Gašić, Z. Juranić, T. Stanojković, S. Tufegdžić, Z. Kljajić, D. Sladić, Eur. J. Med. Chem. 45 (2010) 923 (https://doi.org/10.1016/j.ejmech.2009.11.033)

S. Kolarević, D. Milovanović, M. Kračun-Kolarević, J. Kostić, K. Sunjog, R. Martinović, J. Đorđević, I. Novaković, D. Sladić, B. Vuković-Gačić, Drug Chem. Toxicol. 42 (2019) 130 (https://doi.org/10.1080/01480545.2017.1413108)

M. Jeremić, J. Dinić, M. Pešić, M. Stepanovic, I. Novaković, D. Šegan, D. Sladić, J. Serb. Chem. Soc. 83 (2018) 1193 (https://doi.org/10.2298/JSC180627062J)

J. Vilipić, I. Novaković, T. Stanojković, I. Matić, D. Šegan, Z. Kljajić, D. Sladić, Bioorg. Med. Chem. 23 (2015) 6930 (https://doi.org/10.1016/j.bmc.2015.09.044)

M. Jeremić, M. Pešić, J. Dinić, J. Banković, I. Novaković, D. Šegan, D. Sladić, Eur. J. Med. Chem. 118 (2016) 107 (https://doi.org/10.1016/j.ejmech.2016.04.011)

J. Đorđević, S. Kolarević, J. Jovanović, J. Kostić-Vuković, I. Novaković, M. Jeremić, D. Sladić, B. Vuković-Gačić, Drug Chem. Toxicol. 43 (2020) 522 (https://doi.org/10.1080/01480545.2018.1514043)

X. Li, J. Ni, Y. Tang, X. Wang, H. Tang, H. Li, S. Zhang, X. Shen, Nat. Prod. Res. 33 (2019) 2722 (https://doi.org/10.1080/14786419.2018.1465425)

M. Sarvizadeh, O. Hasanpour, Z. Naderi Ghale-Noie, S. Mollazadeh, M. Rezaei, H. Pourghadamyari, M. Masoud Khooy, M. Aschner, H. Khan, N. Rezaei, L. Shojaie, H. Mirzaei, Front. Oncol. 11 (2021) 650256 (https://doi.org/10.3389/fonc.2021.650256)

M. C. H. Gruhlke, C. Nicco, F. Batteux, A. J. Slusarenko, Antioxidants 6 (2017) 1 (https://doi.org/10.3390/antiox6010001)

I. Novaković, Z. Vujčić, T. T. Božić, N. Božić, N. B. Milosavić, D. Sladić, J. Serb. Chem. Soc. 68 (2003) 243 (https://doi.org/10.2298/JSC0305243N)

M. S. Blois, Nature 181 (1958) 1199 (http://dx.doi.org/10.1038/1811199a0)

S. D. Sarker, L. Nahar, Y. Kumarasamy, Methods 42 (2007) 321 (https://doi.org/10.1016/j.ymeth.2007.01.006)

E. J. Crevelin, S. C. Caixeta, H. J. Dias, M. Groppo, W. R. Cunha, C. H. G. Martins, A. E. M. Crotti, Evid. Based Complementary Altern. Med. (2015) 102317 (https://doi.org/10.1155/2015/102317)

P. Vanhaecke, G. Persoone, Ecotoxicol. Test. Mar. Environ. 2 (1984) 588 (https://www.researchgate.net/publication/36455047)

A. Azqueta, K. B. Gutzkow, C. C. Priestley, S. Meier, J. S. Walker, G. Brunborg, A. R. Collins, Toxicol. in Vitro 27 (2013) 768 (https://doi.org/10.1016/j.tiv.2012.12.006)

Z. Gačić, S. Kolarević, K. Sunjog, M. Kračun-Kolarević, M. Paunović, J. Knežević-

-Vukčević, B. Vuković-Gačić, Environ. Pollut. 191 (2014) 145 (https://doi.org/10.1016/j.envpol.2014.04.024)

H. Lai, Y. Lim, Int. J. Environ. Sci. 2 (2011) 442 (https://doi.org/10.7763/IJESD.2011.V2.166)

S. A. Soto-Rodriguez, A. Roque, M. L. Lizarraga-Partida, A. L. Guerra-Flores, B. Gomez-Gil, Dis. Aquat. Org. 53 (2003) 231 (https://doi.org/10.3354/dao053231)

A. Koch, P. Tamez, J. Pezzuto, D. Soejarto, J. Ethnopharmacol. 101 (2005) 95 (https://doi.org/10.1016/j.jep.2005.03.011)

P. Tanamatayarat, P. Limtrakul, S. Chunsakaow, C. Duangrat, Thai J. Pharm. Sci. 27 (2003) 167 (https://www.thaiscience.info/Article%20for%20ThaiScience/Article/5/10016408.pdf)

D. Sladic, M. J. Gasic, Molecules 11 (2006) 1 (https://doi.org/10.3390/11010001)

I. Pérez-Torres, V. Guarner-Lans, M. E. Rubio-Ruiz, Int. J. Mol. Sci. 18 (2017) 2098 (https://doi.org/10.3390/ijms18102098)

C. P. Wu, S. Ohnuma, S. V. Ambudkar, Curr. Pharm. Biotechnol. 12 (2011) 609 (https://doi.org/10.2174/138920111795163887)

T. Okubo, Y. Yokoyama, K. Kano, I. Kano, Food Chem. Toxicol. 41 (2003) 679 (https://doi.org/10.1016/S0278-6915(03)00002-4)

W. Fiers, R. Beyaert, W. Declercq, P. Vandenabeele, Oncogene 18 (1999) 7719 (https://doi.org/10.1038/sj.onc.1203249).

Most read articles by the same author(s)