Chemical reactivity of alliin and its molecular interactions with the M proteasepro of SARS-CoV-2.

Main Article Content

Wendolyne López-Orozco
https://orcid.org/0000-0003-4614-2234
Luis Humberto Mendoza-Huizar
https://orcid.org/0000-0003-2373-4624
Giaan A. Álvarez-Romero
https://orcid.org/0000-0002-9525-3937
J. Martín Torres-Valencia
https://orcid.org/0000-0001-6426-7562
Maricruz Sánchez-Zavala
https://orcid.org/0000-0002-8263-5880

Abstract

In the present work a computational study of the chemical reactivity of alliin at the X/DGDZVP level of theory (where X=B3LYP, M06, M06L and wB97XD) was performed. The distribution of active sites on alliin was determined by evaluating the Fukui function. For electrophilic attacks, the more reactive sites are on the carbon atoms of the prop-2-ene moiety. The more active sites for nucleophilic attacks are located on the thioether group. In the case of free radical attacks, the more reactive sites are on the carbonyl, thioether and prop-2-ene moieties. Additionally, the molecular docking study revealed that, alliin is able to dock to the Mproteasepro of SARS-CoV-2 through interactions with the catalytic CYS145-HSD164 dyad via Van der Waals interactions, with MET49 with interactions alkyl-type ions and with PHE140 by hydrogen bonds. Also, the molecular dynamic study indicates that alliin remains in the pocket site. Last result suggests that this molecule is a potential candidate for further in vitro evaluation as a drug for the treatment of the major protease-based SARS-CoV-2 virus.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
W. López-Orozco, L. H. Mendoza-Huizar, G. A. Álvarez-Romero, J. M. Torres-Valencia, and M. Sánchez-Zavala, “Chemical reactivity of alliin and its molecular interactions with the M proteasepro of SARS-CoV-2”., J. Serb. Chem. Soc., Oct. 2023.
Section
Theoretical Chemistry
Author Biography

Luis Humberto Mendoza-Huizar, Universidad Autónoma del Estado de Hidalgo, Mexico

Academic Area of Chemistry, Researcher

Funding data

References

B. Hughes, B. Murray, J. North, L. Lawson, Planta Med 55 (1989) 114–114. (https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-961894)

S. Quintero-Fabián, D. Ortuño-Sahagún, M. Vázquez-Carrera, R. I. López-Roa, Mediators Inflamm. 2013 (2013). (https://doi.org/10.1155/2013/381815)

M. G. Jones, J. Hughes, A. Tregova, J. Milne, A. B. Tomsett, H. A. Collin, J. Exp. Bot. 55 (2004) 1903–1918. (https://doi.org/10.1093/jxb/erh138)

C. Jacob, A. Anwar, Physiol. Plant. 133 (2008) 469–480. (https://doi.org/10.1111/j.1399-3054.2008.01080.x)

N. D. Weber, D. O. Andersen, J. A. North, B. K. Murray, L. D. Lawson, B. G. Hughes, Planta Med. 58 (1992) 417–423. (https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-961504)

A. Helen, K. Krishnakumar, P. L. Vijayammal, K. T. Augusti, Pharmacology 67 (2003) 113–117. (https://doi.org/10.1159/000067796)

D. A. Hanoush, A. H. Al-Auqaili, M. Mansour, A. Ghosh, Trop. J. Nat. Prod. Res. 6 (2022) 1233–1240. (http://www.doi.org/10.26538/tjnpr/v1i4.5)

J. M. Casasnovas, T. A. Springer, J. Biol. Chem. 270 (1995) 13216–13224. (https://doi.org/10.1074/jbc.270.22.13216)

P. Gale, Microb. Risk Anal. 21 (2022) 100198. (https://doi.org/10.1016/j.mran.2021.100198)

M. E. Popovic, Microbiol. Res. 270 (2023) 127337. (https://doi.org/10.1016/j.micres.2023.127337)

K. Rajagopal, G. Byran, S. Jupudi, R. Vadivelan, Int. J. Heal. Allied Sci. 9 (2020) 43–50. (http://www.doi.org/10.4103/ijhas.IJHAS_55_20)

W. Lopez-Orozco, L. H. Mendoza-Huizar, G. A. Álvarez-Romero, J. de J. M. Torres-Valencia, Pädi Boletín Científico Ciencias Básicas e Ing. Del ICBI 10 (2023) 126–130. (https://repository.uaeh.edu.mx/revistas/index.php/icbi)

M. B. M. Spera, F. A. Quintão, D. K. D. Ferraresi, W. R. Lustri, A. Magalhães, A. L. B. Formiga, P. P. Corbi, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 78 (2011) 313–318. (https://doi.org/10.1016/j.saa.2010.10.012)

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793–1873. (https://doi.org/10.1021/cr990029p)

R. G. Pearson, J. Chem. Educ. 64 (1987) 561–567. (https://doi.org/10.1021/ed064p561)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1977) 3801–3807. (https://doi.org/10.1063/1.436185)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516. (https://doi.org/10.1021/ja00364a005)

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049–4050. (https://doi.org/10.1021/ja00326a036)

R. G. Parr, Horizons Quantum Chem. (1980) 5–15. (https://link.springer.com/book/10.1007/978-94-009-9027-2)

W. Yang, W. J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708–5711. (https://doi.org/10.1021/ja00279a008)

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (2011) 560–571. (https://doi.org/10.1139/v92-079)

K. Raghavachari, Theor. Chem. Accounts 103 (2000) 361–363. (https://link.springer.com/article/10.1007/s002149900065)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241. (https://link.springer.com/article/10.1007/s00214-007-0310-x)

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 8487–8492. (https://doi.org/10.1073/pnas.1705670114)

J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615–6620. (https://doi.org/10.1039/B810189B)

S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117–129. (https://doi.org/10.1016/0301-0104(81)85090-2)

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009. (https://gaussian.com/g09citation/)

Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh, PA. (https://gaussian.com/508_gvw/)

A. Allouche, J. Comput. Chem. 32 (2012) 174–182. (https://doi.org/10.1002/jcc.21600)

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592. (https://doi.org/10.1002/jcc.22885)

Jorge-Finnigan, A.; Brasil, S.; Underhaug, J.; Ruíz-Sala, P.; Merinero, B.; Banerjee, R.; Desviat, L. R.; Ugarte, M.; Martinez, A.; Pérez, B. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type. Hum. Mol. Genet. 18(2013). (https://doi.org/10.1093/hmg/ddt217)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 25 (2004) 1605–1612. (https://doi.org/10.1002/jcc.20084)

BIOVIA, Dassault Systèmes, Discovery Studio Visualiser 2019, San Diego: Dassault Systèmes, 2019. (https://discover.3ds.com/discovery-studio-visualizer-download)

J. L. Gázquez, J. Phys. Chem. A 101 (1997) 4591–4593. (https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000100002)

P. K. Chattaraj, (2009) 576. (https://books.google.com/books/about/Chemical_Reactivity_Theory.html?hl=es&id=n8JBNvF_2KAC)

F. L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129–138. (https://link.springer.com/article/10.1007/BF00549096)

E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498–6506. (https://doi.org/10.1021/ja100936w)

M. Chebaibi, D. Bousta, R. F. B. Goncalves, H. Hoummani, S. Achour, Res. Sq.1 (2021). (https:// https://doi.org/10.21203/rs.3.rs-679827/v1)

Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, Nature 582(2020) 289-293. (https://doi.org/10.1038/s41586-020-2223-y)

A. Castro-Alvarez, A. M. Costa, J. Vilarrasa, Molecules 22 (2017). (https://doi.org/10.3390/molecules22010136).

Most read articles by the same author(s)