A DFT study of the chemical reactivity of thiobencarb and its oxidized derivatives in aqueous phase

Luis Humberto Mendoza-Huizar

Abstract


In the present work, the global and local reactivity of S-4-chlorobenzyl N, N-diethylthiocarbamate (TB) and its oxidized derivatives (sulfone (TBSu) and sulfoxide (TBS) was analyzed. Also, the chemical reactivity of the dechlorinated forms of TB (DTB), TBSu (DTBSu) and TBs (DTBs) was studied. The calculations were performed at the wB97XD/6-311++G(2d,2p) level of theory in the aqueous phase. The condensed Fukui functions indicate that for TB and DTB the most preferred sites for donating electron in a reaction are located in the S and N atoms, while the most reactive sites for accepting electrons are associated with the aromatic ring (AR). For TBS and DTBS, the more reactive sites are located on AR, S and AR for nucleophilic, electrophilic and free radical attacks, respectively. In the case of TBSu and DTBSu, the AR result to be the more reactive zone for the three kind of attacks. Last results suggest that the cleavage of the C–S bond in TB, TBS and their dechlorinated forms is favored by electrophilic attacks. Additionally, our results suggest that in TB is plausible the cleavage of the C-N favored by electrophiles attacking on this molecule.


Keywords


thiobencarb; Fukui function; dual descriptor; DFT

Full Text:

PDF (2,865 kB)

References


J. L. Maclean, D. C. Dawe, B. Hardy, G. P. Hettel, Rice Almanac: Source Book for the Most Important Economic Activity of Earth, CABI Publishing, Wallingford, UK, 2002

V. Singh, M. L. Jat, Z. A. Ganie, B. S. Chauhan, R. K. Gupta, Crop Prot. 81 (2016) 168

Y. H. Moon, S. Kuwatsuka, J. Pesticide Sci. 9 (1984) 745

Y. Tanetani, K. Kaku, M. Ikeda, T. Shimizu, J. Pestic. Sci. 38 (2013) 39

S. A. Mabury, J. S. Cox, D. G. Crosby. Rev. Environ. Contam. Toxicol. 147 (1996) 71

E. Sancho, M. Sánchez, M.D. Ferrando, E. Andreu-Moliner, J. Environ. Sci. Heal. B 36 (2001) 55

K. Ishikawa, J. Pest. Sci. 5 (1980) 287.

M. Saka, Ecotox. Environ. Saf. 73 (2010) 1165

X. Huang, J. He, X. Yan, Q. Hong, K. Chen, Q. He, L. Zhang, X. Liu, S. Chuang, S Li, J Jiang, Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2016.11.010

S. Kodama, A. Yamamoto, A. Matsunaga, J. Agric. Food Chem. 45 (1997) 990

H.D. Burrows, M. Canle, J.A. Santaballa, S. Steenken, J. Photochem. Photobiol., B 67 (2002) 71

D. Vialaton, C. Richard, J. Photoch. Photobio. A 136 (2000) 169

W.M. Draper, D.G. Crosby, J. Agr. Food Chem. 32 (1984) 231

Y. Magara, T. Aizawa, N. Matumoto, F. Souna, Water Sci. Technol. 30(7) (1994) 119

P. Sapari, B.S. Ismail, Environ Monit Assess. 184(10) (2012) 6347

I. A. Mahzabin, M. R. Rahman, Fundam. Appl. Agric. 2(2) (2017) 277

W. C. Quayle, D. P. Oliver, S. Zrna, J. Agr. Food Chem. 54(19) (2006) 7213

C. Fernández-Vega, E. Sancho, M. D. Ferrando, Chemosphere 135 (2015) 94

R. Shoji, M. Kawakami, Mol. Diver. 10 (2006) 101

M. Cassotti, QSAR study of aquatic toxicity by chemometrics methods in the framework of REACH regulation. University of Milano, Italy, Bicocca, 2015

J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793

H. Chermette, J. Comput. Chem. 20 (1999) 129

P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Int. J. Quantum Chem. 101 (2005) 520

P. K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065

P. A. Johnson, L. J. P. Bartolotti, W. Ayers, T. Fievez, P. Geerlings, Modern Charge Density Analysis, ed(s) Gatti C and Macchi P Springer New York: 2012

S. B. Liu, Acta Phys. Chim. Sin. 25 (2009) 590

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512

R. G. Pearson, J. Chem. Educ. 64 (1987) 561

R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922

J. L. Gázquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111 (2007) 1966

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4048

R. G. Parr, W. Yang, Functional Theory of Atoms and Molecules, 1st ed., Oxford University Press: New York, 1989

S. B. Liu, in: Chemical reactivity theory: A density functional view; Chattaraj, P. K., ed.; Taylor and Francis: Boca Raton, 2009.

C. Morell, A. Grand, A. Toro-Labbe, J. Phys. Chem., A 109 (2005) 205

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys 72 (1980) 650

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639

S. Miertus, J. Tomasi, J. Chem. Phys. 65 (1982) 239

S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55 (1981) 117.

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009

Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh

A. Poland, D. Palen, E. Glover, Nature 300 (1982) 271

D. Wondrousch, A. Böhme, D. Thaens, N. Ost, G. Schüürmann, J. Phys. Chem. Lett. 1 (2010) 1605

A. U. Orozco-Valencia, A. Vela, J. Mex. Chem. Soc. 56(3) (2012) 294

L. O. Ruzo, J.E. Casida, J. Agric. Food Chem. 33 (1985) 272

L. Senthilkumar, P. Umadevi, K.N. Nithya, P. Kolandaivel, J. Mol. Model. 19(8) (2013) 3411.




DOI: https://doi.org/10.2298/JSC170927034M

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)