Theoretical investigation of the molecular structure and molecular docking of naratriptan

Main Article Content

Wendolyne López-Orozco
Clara Hilda Rios-Reyes
Luis Humberto Mendoza-Huizar
http://orcid.org/0000-0003-2373-4624

Abstract

: In this work, a computational chemical study of the naratriptan was carried out at the X/DGDZVP (where X = B3LYP, M06, M06L and wB97XD) level of theory, the results suggest the existence of two possible conformers in the aqueous phase. The evaluation of the global and local reactivity descriptors indicates that both conformers show the same chemical behaviour. The dock­ing studies reveal that both conformers bind to TYR359 residue of the 5HT1B receptor. Also, the first conformer binds to the receptor through THR209 and THR213 while the second one through THR209 and SER 212.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
W. López-Orozco, C. H. Rios-Reyes, and L. H. Mendoza-Huizar, “Theoretical investigation of the molecular structure and molecular docking of naratriptan”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1291–1301, Oct. 2020.
Section
Theoretical Chemistry
Author Biographies

Clara Hilda Rios-Reyes, Universidad Lasalle Pachuca, Calle Belisario Domínguez 202, Centro, 42000 Pachuca de Soto, Hgo. México

Universidad Lasalle Pachuca, Professor

Luis Humberto Mendoza-Huizar, Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry. Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo. México

Academic Area of Chemistry, Researcher

References

P. J. Goadsby, R. B. Lipton, M. Ferrari, N. Engl. J. Med. 346 (2002) 257 (https://doi.org/10.1056/NEJMra010917)

M. D. Ferrari, R. R. Klever, G. M. Terwindt, C. Ayata, A. M. J. M. van den Maagden-berg, Lancet Neurol. 14 (2015) 65 (https://doi.org/10.1016/S1474-4422(14)70220-0)

T. Lempert, J. Olesen, J. Furman, J. Waterston, B. Seemungal, J. Carey, A. Bisdorff, M. Versino, S. Evers, D. Newman-Toker, J. Vestib. Res. 22 (2012) 167 (https://doi.org/10.3233/VES-2012-0453)

P. J. Goadsby, A. R. Charbit, A. P. Andreou, S. Akerman, P. R. Holland, Neuroscience 161 (2009) 327 (https://doi.org/10.1016/j.neuroscience.2009.03.019)

G. A. Lambert, CNS Drug Rev. 11 (2005) 289 (https://doi.org/10.1111/j.1527-3458.2005.tb00048.x)

M. M. Johnston, A. M. Rapoport, Drugs 70 (2010) 1505 (https://doi.org/10.2165/11537990-000000000-00000)

S. Akerman, P. R. Holland, P. J. Goadsby, Nat. Rev. Neurosci. 12 (2011) 570 (https://doi.org/10.1038/nrn3057)

F. D. Sheftell, A. M. Rapoport, S. J. Tepper, M. E. Bigal, Headache 45 (2005) 1400 (https://doi.org/10.1038/nrn3057)

S. D. Silberstein, in Neurology and Clinical Neuroscience, A. H. V. Schapira, E. Byrne, R. S. J. Frackowiak, Y. Mizuno, S. D. Silberstein, Eds., Mosby Elsevier, Philadelphia, PA, 2007, pp. 739–755 (https://doi.org/10.1016/B978-0-323-03354-1.50060-2)

Y. Zhou, J. Wang, Y. Xiao, T. Wang, X. Huang, Curr. Pharm. Des. 24 (2018) 2375 (https://doi.org/10.2174/1381612824666180515155425)

A. Islam, K. Shadev, M. V. Redy, M. M. Layek, C. Bhar, Patent WO 2006 010078 A2. (https://patentimages.storage.googleapis.com/ef/4e/7f/4da5fce99e57cb/WO2006010078A2.pdf)

J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3 (http://www.scielo.org.mx/pdf/jmcs/v52n1/v52n1a2.pdf)

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (https://doi.org/10.1021/cr990029p)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)

R. G. Pearson, J. Chem. Educ. 64 (1987) 561 (http://dx.doi.org/10.1021/ed064p561)

R. G. Parr, P. K. Chattaraj, J. Am. Chem. Soc. 113 (1991) 1854 (http://dx.doi.org/10.1021/ja00005a072)

R. G. Pearson, J. Am. Chem. Soc. 107 (1985) 6801 (https://doi.org/10.1021/ja00310a009)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (http://dx.doi.org/10.1063/1.436185)

R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)

P. K. Chattaraj, Chemical reactivity theory: a density functional view, First, CRC Press/Taylor & Francis, Boca Raton, Fl, 2009 (ISBN 9781420065435).

R. G. Parr, W. Yang, Density-functional theory of atoms and molecules, First, Oxford University Press, New York, 1989 (ISBN-10 0195092767).

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://dx.doi.org/10.1021/ja00326a036)

W. Yang, W. J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708 (https://dx.doi.org/10.1021/ja00279a008)

J. Z. Vilseck, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 10 (2014) 2802 (https://doi.org/10.1021/ct500016d)

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560 (https://doi.org/10.1139/v92-079)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (http://dx.doi.org/10.1063/1.464913)

A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://dx.doi.org/10.1103/PhysRevA.38.3098)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (http://dx.doi.org/10.1007/s00214-007-0310-x)

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, X. H. Designed, X. H. Performed, PNAS 114 (2017) 8487 (http://dx.doi.org/10.1073/pnas.1705670114)

J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615 (https://doi.org/10.1039/b810189b)

S. Miertus̃, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117 (https://dx.doi.org/10.1016/0301-0104(81)85090-2)

S. Miertus̃, J. Tomasi, Chem. Phys. 65 (1982) 239 (http://dx.doi.org/10.1016/0301-0104(82)85072-6)

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009

Gaussview, Rev. 3.09, Windows version, Gaussian Inc., Pittsburgh, PA

M. Thompson (n.d.), http://www.arguslab.com/arguslab.com/ArgusLab.html (Accessed September 25, 2019)

A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (https://doi.org/10.1002/jcc.21600)

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

S. Dallakyan, A. J. Olson, Methods Mol. Biol. 1263 (2015) 243 (https://doi.org/10.1007/978-1-4939-2269-7_19)

O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455 (https://doi.org/10.1002/jcc.21334)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. (2004) (https://doi.org/10.1002/jcc.20084)

L. Schrödinger, Thomas Hold. (2015) (https://doi.org/10.1007/s13398-014-0173-7.2)

R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. (2011) (https://doi.org/10.1021/ci200227u)

D. V. R. N. Bhikshapathi, V. D. Madhuri, V. V Rajesham, R. Suthakaran, Am. J. Pharmtech Res. Res. 4 (2014) 799 (http://ajptr.com/archive/volume-4/april-2014-issue-2)

E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498 (https://doi.org/10.1021/ja100936w)

J. L. Gázquez, F. Méndez, J. Phys. Chem. 98 (1994) 4591 (https://doi.org/10.1021/j100068a018)

F. L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129 (http://dx.doi.org/10.1007/BF00549096).

L. Senthilkumar, P. Umadevi, K. N. Nithya, P. Kolandaivel, J. Mol. Model. 19 (2013) 3411 (http://doi: 10.1007/s00894-013-1866-0).

Most read articles by the same author(s)