Theoretical investigation of the molecular structure and molecular docking of naratriptan
Main Article Content
Abstract
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
P. J. Goadsby, R. B. Lipton, M. Ferrari, N. Engl. J. Med. 346 (2002) 257 (https://doi.org/10.1056/NEJMra010917)
M. D. Ferrari, R. R. Klever, G. M. Terwindt, C. Ayata, A. M. J. M. van den Maagden-berg, Lancet Neurol. 14 (2015) 65 (https://doi.org/10.1016/S1474-4422(14)70220-0)
T. Lempert, J. Olesen, J. Furman, J. Waterston, B. Seemungal, J. Carey, A. Bisdorff, M. Versino, S. Evers, D. Newman-Toker, J. Vestib. Res. 22 (2012) 167 (https://doi.org/10.3233/VES-2012-0453)
P. J. Goadsby, A. R. Charbit, A. P. Andreou, S. Akerman, P. R. Holland, Neuroscience 161 (2009) 327 (https://doi.org/10.1016/j.neuroscience.2009.03.019)
G. A. Lambert, CNS Drug Rev. 11 (2005) 289 (https://doi.org/10.1111/j.1527-3458.2005.tb00048.x)
M. M. Johnston, A. M. Rapoport, Drugs 70 (2010) 1505 (https://doi.org/10.2165/11537990-000000000-00000)
S. Akerman, P. R. Holland, P. J. Goadsby, Nat. Rev. Neurosci. 12 (2011) 570 (https://doi.org/10.1038/nrn3057)
F. D. Sheftell, A. M. Rapoport, S. J. Tepper, M. E. Bigal, Headache 45 (2005) 1400 (https://doi.org/10.1038/nrn3057)
S. D. Silberstein, in Neurology and Clinical Neuroscience, A. H. V. Schapira, E. Byrne, R. S. J. Frackowiak, Y. Mizuno, S. D. Silberstein, Eds., Mosby Elsevier, Philadelphia, PA, 2007, pp. 739–755 (https://doi.org/10.1016/B978-0-323-03354-1.50060-2)
Y. Zhou, J. Wang, Y. Xiao, T. Wang, X. Huang, Curr. Pharm. Des. 24 (2018) 2375 (https://doi.org/10.2174/1381612824666180515155425)
A. Islam, K. Shadev, M. V. Redy, M. M. Layek, C. Bhar, Patent WO 2006 010078 A2. (https://patentimages.storage.googleapis.com/ef/4e/7f/4da5fce99e57cb/WO2006010078A2.pdf)
J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3 (http://www.scielo.org.mx/pdf/jmcs/v52n1/v52n1a2.pdf)
P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (https://doi.org/10.1021/cr990029p)
R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)
R. G. Pearson, J. Chem. Educ. 64 (1987) 561 (http://dx.doi.org/10.1021/ed064p561)
R. G. Parr, P. K. Chattaraj, J. Am. Chem. Soc. 113 (1991) 1854 (http://dx.doi.org/10.1021/ja00005a072)
R. G. Pearson, J. Am. Chem. Soc. 107 (1985) 6801 (https://doi.org/10.1021/ja00310a009)
R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (http://dx.doi.org/10.1063/1.436185)
R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)
P. K. Chattaraj, Chemical reactivity theory: a density functional view, First, CRC Press/Taylor & Francis, Boca Raton, Fl, 2009 (ISBN 9781420065435).
R. G. Parr, W. Yang, Density-functional theory of atoms and molecules, First, Oxford University Press, New York, 1989 (ISBN-10 0195092767).
R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://dx.doi.org/10.1021/ja00326a036)
W. Yang, W. J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708 (https://dx.doi.org/10.1021/ja00279a008)
J. Z. Vilseck, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 10 (2014) 2802 (https://doi.org/10.1021/ct500016d)
N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560 (https://doi.org/10.1139/v92-079)
A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (http://dx.doi.org/10.1063/1.464913)
A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://dx.doi.org/10.1103/PhysRevA.38.3098)
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (http://dx.doi.org/10.1007/s00214-007-0310-x)
Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, X. H. Designed, X. H. Performed, PNAS 114 (2017) 8487 (http://dx.doi.org/10.1073/pnas.1705670114)
J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615 (https://doi.org/10.1039/b810189b)
S. Miertus̃, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117 (https://dx.doi.org/10.1016/0301-0104(81)85090-2)
S. Miertus̃, J. Tomasi, Chem. Phys. 65 (1982) 239 (http://dx.doi.org/10.1016/0301-0104(82)85072-6)
Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009
Gaussview, Rev. 3.09, Windows version, Gaussian Inc., Pittsburgh, PA
M. Thompson (n.d.), http://www.arguslab.com/arguslab.com/ArgusLab.html (Accessed September 25, 2019)
A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (https://doi.org/10.1002/jcc.21600)
T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)
S. Dallakyan, A. J. Olson, Methods Mol. Biol. 1263 (2015) 243 (https://doi.org/10.1007/978-1-4939-2269-7_19)
O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455 (https://doi.org/10.1002/jcc.21334)
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. (2004) (https://doi.org/10.1002/jcc.20084)
L. Schrödinger, Thomas Hold. (2015) (https://doi.org/10.1007/s13398-014-0173-7.2)
R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. (2011) (https://doi.org/10.1021/ci200227u)
D. V. R. N. Bhikshapathi, V. D. Madhuri, V. V Rajesham, R. Suthakaran, Am. J. Pharmtech Res. Res. 4 (2014) 799 (http://ajptr.com/archive/volume-4/april-2014-issue-2)
E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498 (https://doi.org/10.1021/ja100936w)
J. L. Gázquez, F. Méndez, J. Phys. Chem. 98 (1994) 4591 (https://doi.org/10.1021/j100068a018)
F. L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129 (http://dx.doi.org/10.1007/BF00549096).
L. Senthilkumar, P. Umadevi, K. N. Nithya, P. Kolandaivel, J. Mol. Model. 19 (2013) 3411 (http://doi: 10.1007/s00894-013-1866-0).