Theoretical investigation of the molecular structure and molecular docking of naratriptan

Clara Hilda Rios-Reyes, Luis Humberto Mendoza-Huizar

Abstract


In this work, a computational chemical study of the naratriptan was carried out at the X/DGDZVP (where X=B3LYP, M06, M06L and wB97XD) level of theory, the results suggest the existence of two possible conformers in the aqueous phase. The evaluation of the global and local reactivity descriptors indicates that both conformers show the same chemical behavior. The docking studies reveal that both conformers bind to TYR359 residue of the 5HT1B receptor. Also, the first conformer binds to the receptor through THR209 and THR213 while the second one through THR209 and SER 212.

Keywords


triptanes; reactivity; Fukui; docking; migraine

Full Text:

PDF (2,631 kB)

References


P. J. Goadsby, R. B. Lipton, M. Ferrari, N Engl J Med 346 (2002) 257 (https://doi.org/10.1056/NEJMra010917)

M. D. Ferrari, R. R. Klever, G. M. Terwindt, C. Ayata, A. M. J. M. van den Maagden-berg, Lancet Neurol. 14 (2015) 65 (https://doi.org/10.1016/S1474-4422(14)70220-0)

T. Lempert, J. Olesen, J. Furman, J. Waterston, B. Seemungal, J. Carey, A. Bisdorff, M. Versino, S. Evers, D. Newman-Toker, J. Vestib. Res. Equilib. Orientat. 22 (2012) 167 (https://doi.org/10.3233/VES-2012-0453)

P. J. Goadsby, A. R. Charbit, A. P. Andreou, S. Akerman, P. R. Holland, Neuroscience 161 (2009) 327 (https://doi.org/10.1016/j.neuroscience.2009.03.019)

G. A. Lambert, CNS Drug Rev. 11 (2005) 289 (https://doi.org/10.1111/j.1527-3458.2005.tb00048.x)

M. M. Johnston, A. M. Rapoport, Drugs 70 (2010) 1505 (https://doi.org/10.2165/11537990-000000000-00000)

S. Akerman, P. R. Holland, P. J. Goadsby, Nat. Rev. Neurosci. 12 (2011) 570 (https://doi.org/10.1038/nrn3057)

F. D. Sheftell, A. M. Rapoport, S. J. Tepper, M. E. Bigal, Headache 45 (2005) 1400 (https://doi.org/10.1038/nrn3057)

S. D. Silberstein, CHAPTER 56 – MIGRAINE, in Neurol. Clin. Neurosci., 2007, pp. 739–755 (https://doi.org/10.1016/B978-0-323-03354-1.50060-2)

Y. Zhou, J. Wang, Y. Xiao, T. Wang, X. Huang, Curr. Pharm. Des. 24 (2018) 2375 (https://doi.org/10.2174/1381612824666180515155425)

A. Islam, K. Shadev, M. V. Redy, M. M. Layek, C. Bhar, Patent WO 2006 010078 A2. (https://patentimages.storage.googleapis.com/ef/4e/7f/4da5fce99e57cb/WO2006010078A2.pdf)

J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3 (http://www.scielo.org.mx/pdf/jmcs/v52n1/v52n1a2.pdf)

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (https://doi.org/10.1021/cr990029p)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)

R. G. Pearson, J. Chem. Educ. 64 (1987) 561 (http://dx.doi.org/10.1021/ed064p561)

R. G. Parr, P. K. Chattaraj, J. Am. Chem. Soc. 113 (1991) 1854 (http://dx.doi.org/10.1021/ja00005a072)

R. G. Pearson, J. Am. Chem. Soc. 107(24) (1985) 6801 (https://doi.org/10.1021/ja00310a009)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (http://dx.doi.org/10.1063/1.436185)

R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)

P. K. Chattaraj, Chemical reactivity theory: a density functional view, First, CRC Press/Taylor & Francis, Boca Ratón, 2009 (ISBN 9781420065435).

R. G. Parr, W. Yang, Density-functional theory of atoms and molecules, First, Oxford University Press, New York, 1989 (ISBN-10 0195092767).

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://dx.doi.org/10.1021/ja00326a036)

W. Yang, W. J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708 (https://dx.doi.org/10.1021/ja00279a008)

J. Z. Vilseck, J. Tirado-Rives, W. L. Jorgensen, J Chem Theory Comput 10 (2014) 2802 (https://doi.org/10.1021/ct500016d)

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560 (https://doi.org/10.1139/v92-079)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (http://dx.doi.org/10.1063/1.464913).

A. D. Becke, Phys. Rev. A 38 (1988) 3098 (https://dx.doi.org/10.1103/PhysRevA.38.3098)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (http://dx.doi.org/10.1007/s00214-007-0310-x)

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, X. H. Designed, X. H. Performed, PNAS 114 (2017) 8487 (http://dx.doi.org/10.1073/pnas.1705670114)

J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615 (https://doi.org/10.1039/b810189b)

S. Miertus̃, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117 (https://dx.doi.org/10.1016/0301-0104(81)85090-2)

S. Miertus̃, J. Tomasi, Chem. Phys. 65 (1982) 239 (http://dx.doi.org/10.1016/0301-0104(82)85072-6)

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009

Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh, PA

M. Thompson, (n.d.) http://www.arguslab.com/arguslab.com/ArgusLab.html Accessed September 25, 2019

A.-R. Allouche, J. Comput. Chem. 32 (2011) 174 (https://doi.org/10.1002/jcc.21600)

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

S. Dallakyan, A. J. Olson, in Methods Mol. Biol. 1263 (2015) 243 (https://doi.org/10.1007/978-1-4939-2269-7_19)

O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455 (https://doi.org/10.1002/jcc.21334)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. (2004) (https://doi.org/10.1002/jcc.20084)

L. Schrödinger, Thomas Hold. (2015) (https://doi.org/10.1007/s13398-014-0173-7.2)

R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. (2011) (https://doi.org/10.1021/ci200227u)

D. V. R. N. Bhikshapathi, V. D. Madhuri, V. V Rajesham, R. Suthakaran, Am. J. Pharmtech Res. Res. 4 (2014) 799 (http://ajptr.com/archive/volume-4/april-2014-issue-2)

E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498 (https://doi.org/10.1021/ja100936w)

J. L. Gázquez, F. Méndez, J. Phys. Chem. 98(17) (1994) 4591 (https://doi.org/10.1021/j100068a018)

F. L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129 (http://dx.doi.org/10.1007/BF00549096).

L. Senthilkumar, P. Umadevi, K. N. Nithya, P. Kolandaivel, J Mol Model 19 (2013) 3411 (http://doi: 10.1007/s00894-013-1866-0)




DOI: https://doi.org/10.2298/JSC191229025L

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)