Tuning the copper cluster’s size on HOPG by electrodeposition from perchlorate aqueous solutions. An AFM study

Authors

  • Diana Elizabeth Garcia-Rodriguez Comunidad Educativa Entorno. Eugenio Garza Sada No. 72. Los Pocitos. Aguascalientes
  • Clara Hilda Rios-Reyes Artes. San Felipe 215. Providence. Mineral de la Reforma Hidalgo, Hgo
  • Luis Humberto Mendoza-Huizar Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry. Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo http://orcid.org/0000-0003-2373-4624

DOI:

https://doi.org/10.2298/JSC190123054G

Keywords:

copper, nanocluster, instantaneous nucleation, potentiostatic, AFM

Abstract

In this work, we report the electrochemical synthesis of nanometric copper clusters smaller than 3 nm of height and 14.3 nm of diameter from per­chlorate solutions. From the number of copper clusters counted directly from the AFM (Atomic force microscopy) images, it was possible to derive an equation, which is able to predict the number of clusters formed in function on the applied potential. Also, qualitative AFM images were simulated employing a spreadsheet and the freeware ImageJ, the results obtained show concordance with the experimental AFM images.

Author Biographies

Diana Elizabeth Garcia-Rodriguez, Comunidad Educativa Entorno. Eugenio Garza Sada No. 72. Los Pocitos. Aguascalientes

Professor

Clara Hilda Rios-Reyes, Artes. San Felipe 215. Providence. Mineral de la Reforma Hidalgo, Hgo

Professor

Luis Humberto Mendoza-Huizar, Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry. Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo

Academic Area of Chemistry, Researcher

References

H.-S. Kim, Sanjay, R. Dhage, D.-E. Shim, H Thomas Hahn, Appl. Phys., A 97 (2009) 791–798 (http://dx.doi.org/10.1007/s00339-009-5360-6)

T. Yonezawa, H. Tsukamoto, M. T. Nguyen, Adv. Powder Technol. 28 (2017) 1966 (http://dx.doi.org/10.1016/j.apt.2017.05.006)

H. Heli, M. Hajjizadeh, A. Jabbari, A. A. Moosavi-Movahedi, Biosens. Bioelectron. 24 (2009) 2328 (http://dx.doi.org/10.1016/J.BIOS.2008.10.036)

V. Mani, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devi, Y. Tai, Electrochim. Acta 176 (2015) 804 (http://dx.doi.org/10.1016/J.ELECTACTA.2015.07.098)

M. El Zowalaty, N. A. Ibrahim, M. Salama, K. Shameli, M. Usman, N. Zainuddin, Int. J. Nanomedicine 8 (2013) 4467 (http://dx.doi.org/10.2147/IJN.S50837)

O. Mondal, A. Datta, D. Chakravorty, M. Pal, MRS Commun. 3 (2013) 91 (http://dx.doi.org/10.1557/mrc.2013.13)

T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, M. C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 1 (http://dx.doi.org/10.1088/2043-6262/2/1/015009)

C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, L. A. Curtiss, J. Am. Chem. Soc. 137 (2015) 8676 (http://dx.doi.org/10.1021/jacs.5b03668)

C. Wu, B. P. Mosher, T. Zeng, J. Nanoparticle Res. 8 (2006) 965 (http://dx.doi.org/10.1007/s11051-005-9065-2)

H.-X. Zhang, U. Siegert, R. Liu, W.-B. Cai, Nanoscale Res. Lett. 4 (2009) 705 (http://dx.doi.org/10.1007/s11671-009-9301-2)

X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu, Appl. Surf. Sci. 253 (2006) 2727 (http://dx.doi.org/10.1016/j.apsusc.2006.05.125)

W. Yu, H. Xie, L. Chen, Y. Li, C. Zhang, Nanoscale Res. Lett. 4 (2009) 465 (http://dx.doi.org/10.1007/s11671-009-9264-3)

M. Salavati-Niasari, F. Davar, Mater. Lett. 63 (2009) 441 (http://dx.doi.org/10.1016/J.MATLET.2008.11.023)

K. Woo, D. Kim, J. S. Kim, S. Lim, J. Moon, Langmuir 25 (2009) 429 (http://dx.doi.org/10.1021/la802182y)

B. K. Park, D. Kim, S. Jeong, J. Moon, J. S. Kim, Thin Solid Films 515 (2007) 7706 (http://dx.doi.org/10.1016/J.TSF.2006.11.142)

R. M. Tilaki, A. Iraji zad, S. M. Mahdavi, Appl. Phys. A 88 (2007) 415 (http://dx.doi.org/10.1007/s00339-007-4000-2)

K. Mallick, M. J. Witcomb, M. S. Scurrell, Eur. Polym. J. 42 (2006) 670 (http://dx.doi.org/10.1016/J.EURPOLYMJ.2005.09.020).

S. Mondal, S. R. Bhattacharyya, AIP Conf. Proc. 1447 (2012) 737 (http://dx.doi.org/10.1063/1.4710214)

D. E. García-Rodríguez, C. H. Mendoza-Huizar, Luis Humberto, Rios-Reyes, M. A. Alatorre-Ordaz, Química, Quim. Nov. 35 (2012) 699

A. Han, Y. Yang, Q. Zhang, Q. Tu, G. Fang, J. Liu, S. Wang, R. Li, J. Electroanal. Chem. 795 (2017) 116 (http://dx.doi.org/10.1016/j.jelechem.2017.04.058)

L. Huang, E. S. Lee, K. B. Kim, Colloids Surfaces A Physicochem. Eng. Asp. 262 (2005) 125 (http://dx.doi.org/10.1016/j.colsurfa.2005.03.023)

C. J. Yang, F. H. Lu, Langmuir 29 (2013) 16025 (http://dx.doi.org/10.1021/la403719c)

Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chemie Int. Ed. 48 (2009) 60 (http://dx.doi.org/10.1002/anie.200802248)

I. Haas, S. Shanmugam, A. Gedanken, J. Phys. Chem., B 110 (2006) 16947 (http://dx.doi.org/10.1021/JP064216K)

M. J. Siegfried, K.-S. Choi, Adv. Mater. 16 (2004) 1743 (http://dx.doi.org/10.1002/adma.200400177)

A. Radi, D. Pradhan, Y. Sohn, K. T. Leung, ACS Nano 4 (2010) 1553 (http://dx.doi.org/10.1021/nn100023h)

X. J. Zhou, A. J. Harmer, N. F. Heinig, K. T. Leung, Langmuir 20 (2004) 5109 (http://dx.doi.org/10.1021/LA0497301)

R. Bakthavatsalam, S. Ghosh, R. K. Biswas, A. Saxena, A. Raja, M. O. Thotiyl, S. Wadhai, A. G. Banpurkar, J. Kundu, RSC Adv. 6 (2016) 8416 (http://dx.doi.org/10.1039/C5RA22683J)

X.-J. Huang, O. Yarimaga, J.-H. Kim, Y.-K. Choi, J. Mater. Chem. 19 (2009) 478 (http://dx.doi.org/10.1039/B816835K)

M. Raja, J. Subha, F. B. Ali, S. H. Ryu, Mater. Manuf. Process. 23 (2008) 782 (http://dx.doi.org/10.1080/10426910802382080)

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9 (2012) 671 (http://dx.doi.org/10.1038/nmeth.2089)

E. Mattsson, J. O. Bockris, Trans. Faraday Soc. 55 (1959) 1586 (http://dx.doi.org/10.1039/tf9595501586)

A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 4916 (http://dx.doi.org/10.1016/J.ELECTACTA.2006.01.030)

A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 2926 (http://dx.doi.org/10.1016/J.ELECTACTA.2005.08.045)

M. Rivera, C. H. Rios-Reyes, L. H. Mendoza-Huizar, J. Magn. Magn. Mater. 323 (2011) 997 (http://dx.doi.org/10.1016/J.JMMM.2010.11.088)

B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879 (http://dx.doi.org/10.1016/0013-4686(83)85163-9)

B. R. Scharifker, J. Mostany, J. Electroanal. Chem. 177 (1984) 13 (https://doi.org/10.1016/0022-0728(84)80207-7)

B. R. Scharifker, J. Mostany, , in Encycl. Electrochem., M. Bard, A. J. Stratmann (Ed.), Wiley-VCH, Weinheim, 2007, pp. 512–539 (http://dx.doi.org/10.1002/9783527610426.bard020503)

I. Horcas, R. Fernández, Rev. Sci. Instrument. 78 (2007) 013705 (https://doi.org/10.1063/1.2432410)

D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10 (2012) 181 (https://doi.org/10.2478/s11534-011-0096-2)

M. Tomellini, M. Fanfoni, Phys. Rev., B 55 (1997) 14071 (http://dx.doi.org/10.1103/PhysRevB.55.14071).

Published

2020-01-10

How to Cite

[1]
D. E. Garcia-Rodriguez, C. H. Rios-Reyes, and L. H. Mendoza-Huizar, “Tuning the copper cluster’s size on HOPG by electrodeposition from perchlorate aqueous solutions. An AFM study”, J. Serb. Chem. Soc., vol. 84, no. 12, pp. 1415-1426, Jan. 2020.

Issue

Section

Electrochemistry