Tuning the copper clusters size on HOPG by electrodeposition from perchlorate aqueous solutions. An AFM study
Main Article Content
Abstract
In this work, we report the electrochemical synthesis of nanometric copper clusters smaller than 3 nm of height and 14.3 nm of diameter from perchlorate solutions. From the number of copper clusters counted directly from the AFM (Atomic force microscopy) images, it was possible to derive an equation, which is able to predict the number of clusters formed in function on the applied potential. Also, qualitative AFM images were simulated employing a spreadsheet and the freeware ImageJ, the results obtained show concordance with the experimental AFM images.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
H.-S. Kim, Sanjay, R. Dhage, D.-E. Shim, H Thomas Hahn, Appl. Phys., A 97 (2009) 791–798 (http://dx.doi.org/10.1007/s00339-009-5360-6)
T. Yonezawa, H. Tsukamoto, M. T. Nguyen, Adv. Powder Technol. 28 (2017) 1966 (http://dx.doi.org/10.1016/j.apt.2017.05.006)
H. Heli, M. Hajjizadeh, A. Jabbari, A. A. Moosavi-Movahedi, Biosens. Bioelectron. 24 (2009) 2328 (http://dx.doi.org/10.1016/J.BIOS.2008.10.036)
V. Mani, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devi, Y. Tai, Electrochim. Acta 176 (2015) 804 (http://dx.doi.org/10.1016/J.ELECTACTA.2015.07.098)
M. El Zowalaty, N. A. Ibrahim, M. Salama, K. Shameli, M. Usman, N. Zainuddin, Int. J. Nanomedicine 8 (2013) 4467 (http://dx.doi.org/10.2147/IJN.S50837)
O. Mondal, A. Datta, D. Chakravorty, M. Pal, MRS Commun. 3 (2013) 91 (http://dx.doi.org/10.1557/mrc.2013.13)
T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, M. C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 1 (http://dx.doi.org/10.1088/2043-6262/2/1/015009)
C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, L. A. Curtiss, J. Am. Chem. Soc. 137 (2015) 8676 (http://dx.doi.org/10.1021/jacs.5b03668)
C. Wu, B. P. Mosher, T. Zeng, J. Nanoparticle Res. 8 (2006) 965 (http://dx.doi.org/10.1007/s11051-005-9065-2)
H.-X. Zhang, U. Siegert, R. Liu, W.-B. Cai, Nanoscale Res. Lett. 4 (2009) 705 (http://dx.doi.org/10.1007/s11671-009-9301-2)
X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu, Appl. Surf. Sci. 253 (2006) 2727 (http://dx.doi.org/10.1016/j.apsusc.2006.05.125)
W. Yu, H. Xie, L. Chen, Y. Li, C. Zhang, Nanoscale Res. Lett. 4 (2009) 465 (http://dx.doi.org/10.1007/s11671-009-9264-3)
M. Salavati-Niasari, F. Davar, Mater. Lett. 63 (2009) 441 (http://dx.doi.org/10.1016/J.MATLET.2008.11.023)
K. Woo, D. Kim, J. S. Kim, S. Lim, J. Moon, Langmuir 25 (2009) 429 (http://dx.doi.org/10.1021/la802182y)
B. K. Park, D. Kim, S. Jeong, J. Moon, J. S. Kim, Thin Solid Films 515 (2007) 7706 (http://dx.doi.org/10.1016/J.TSF.2006.11.142)
R. M. Tilaki, A. Iraji zad, S. M. Mahdavi, Appl. Phys. A 88 (2007) 415 (http://dx.doi.org/10.1007/s00339-007-4000-2)
K. Mallick, M. J. Witcomb, M. S. Scurrell, Eur. Polym. J. 42 (2006) 670 (http://dx.doi.org/10.1016/J.EURPOLYMJ.2005.09.020).
S. Mondal, S. R. Bhattacharyya, AIP Conf. Proc. 1447 (2012) 737 (http://dx.doi.org/10.1063/1.4710214)
D. E. García-Rodríguez, C. H. Mendoza-Huizar, Luis Humberto, Rios-Reyes, M. A. Alatorre-Ordaz, Química, Quim. Nov. 35 (2012) 699
A. Han, Y. Yang, Q. Zhang, Q. Tu, G. Fang, J. Liu, S. Wang, R. Li, J. Electroanal. Chem. 795 (2017) 116 (http://dx.doi.org/10.1016/j.jelechem.2017.04.058)
L. Huang, E. S. Lee, K. B. Kim, Colloids Surfaces A Physicochem. Eng. Asp. 262 (2005) 125 (http://dx.doi.org/10.1016/j.colsurfa.2005.03.023)
C. J. Yang, F. H. Lu, Langmuir 29 (2013) 16025 (http://dx.doi.org/10.1021/la403719c)
Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chemie Int. Ed. 48 (2009) 60 (http://dx.doi.org/10.1002/anie.200802248)
I. Haas, S. Shanmugam, A. Gedanken, J. Phys. Chem., B 110 (2006) 16947 (http://dx.doi.org/10.1021/JP064216K)
M. J. Siegfried, K.-S. Choi, Adv. Mater. 16 (2004) 1743 (http://dx.doi.org/10.1002/adma.200400177)
A. Radi, D. Pradhan, Y. Sohn, K. T. Leung, ACS Nano 4 (2010) 1553 (http://dx.doi.org/10.1021/nn100023h)
X. J. Zhou, A. J. Harmer, N. F. Heinig, K. T. Leung, Langmuir 20 (2004) 5109 (http://dx.doi.org/10.1021/LA0497301)
R. Bakthavatsalam, S. Ghosh, R. K. Biswas, A. Saxena, A. Raja, M. O. Thotiyl, S. Wadhai, A. G. Banpurkar, J. Kundu, RSC Adv. 6 (2016) 8416 (http://dx.doi.org/10.1039/C5RA22683J)
X.-J. Huang, O. Yarimaga, J.-H. Kim, Y.-K. Choi, J. Mater. Chem. 19 (2009) 478 (http://dx.doi.org/10.1039/B816835K)
M. Raja, J. Subha, F. B. Ali, S. H. Ryu, Mater. Manuf. Process. 23 (2008) 782 (http://dx.doi.org/10.1080/10426910802382080)
C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9 (2012) 671 (http://dx.doi.org/10.1038/nmeth.2089)
E. Mattsson, J. O. Bockris, Trans. Faraday Soc. 55 (1959) 1586 (http://dx.doi.org/10.1039/tf9595501586)
A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 4916 (http://dx.doi.org/10.1016/J.ELECTACTA.2006.01.030)
A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 2926 (http://dx.doi.org/10.1016/J.ELECTACTA.2005.08.045)
M. Rivera, C. H. Rios-Reyes, L. H. Mendoza-Huizar, J. Magn. Magn. Mater. 323 (2011) 997 (http://dx.doi.org/10.1016/J.JMMM.2010.11.088)
B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879 (http://dx.doi.org/10.1016/0013-4686(83)85163-9)
B. R. Scharifker, J. Mostany, J. Electroanal. Chem. 177 (1984) 13 (https://doi.org/10.1016/0022-0728(84)80207-7)
B. R. Scharifker, J. Mostany, , in Encycl. Electrochem., M. Bard, A. J. Stratmann (Ed.), Wiley-VCH, Weinheim, 2007, pp. 512–539 (http://dx.doi.org/10.1002/9783527610426.bard020503)
I. Horcas, R. Fernández, Rev. Sci. Instrument. 78 (2007) 013705 (https://doi.org/10.1063/1.2432410)
D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10 (2012) 181 (https://doi.org/10.2478/s11534-011-0096-2)
M. Tomellini, M. Fanfoni, Phys. Rev., B 55 (1997) 14071 (http://dx.doi.org/10.1103/PhysRevB.55.14071).