Modification of surface properties and photocatalytic performance of pure and oxygen-doped graphitic carbon nitride via DBD plasma treatment

Main Article Content

Jana Petrović
https://orcid.org/0009-0004-7543-7589
Željko Radovanović
https://orcid.org/0000-0002-0602-3831
Bratislav Obradović
https://orcid.org/0000-0002-3221-7779
Đorđe Janaćković
https://orcid.org/0000-0002-8291-4345
Rada Petrović
https://orcid.org/0000-0001-9511-5633

Abstract

Graphitic carbon nitride (CN) is a non-metallic semiconductor with applications in photocatalysis, including the photocatalytic reduction of Cr(VI) under visible irradiation. To improve its intrinsic properties, two modification strategies were applied: i) oxygen doping by co-calcination of urea with two different amounts of oxalic acid, and ii) dielectric barrier discharge (DBD) plasma treatment. The plasma treatment was applied to pristine and previously oxygen-doped CNs. The properties of the photocatalysts were studied by XRD, FTIR, FESEM, EDS, PL and DRS analysis, as well as by determination of the number of acidic surface functional groups. Both modification methods increased the oxygen content: during oxygen doping, nitrogen was replaced by oxygen in the lattice, while during plasma treatment, oxygen-containing functional groups were introduced at the surface. Plasma treatment of oxygen-doped CNs facilitated surface functionalisation due to the open heptazine ring structure. Oxygen doping narrowed the band gap, which was further slightly reduced by subsequent plasma treatment, thereby lowering the oxidation and reduction potentials. Although the absorption of visible light was improved, the reduction of the band gap resulted in a reduced activity for the photocatalytic reduction of Cr(VI). The best results were obtained with plasma-treated pure CN, due to the increased content of oxygen-containing surface groups, which led to a slightly reduced recombination rate of charge carriers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Petrović, Željko Radovanović, B. Obradović, Đorđe . Janaćković, and R. Petrović, “Modification of surface properties and photocatalytic performance of pure and oxygen-doped graphitic carbon nitride via DBD plasma treatment”, J. Serb. Chem. Soc., Jan. 2025.
Section
Materials

Funding data

References

W. Zhu, Y. Yue, H. Wang, B. Zhang, R. Hou, J. Xiao, X. Huang, A. Ishag, Y. Sun, J. Env. Chem. Eng. 11 (2023) 110164 (https://doi.org/10.1016/j.jece.2023.110164)

M. Pourmadadi, E. Rahmani, M. M. Eshaghi, A. Shamsabadipour, S. Ghotekar, A. Rahdar, L. F. R. Ferreira, J. Drug Deliv. Sci. Techn. 79 (2023) 104001 (https://doi.org/10.1016/j.jddst.2022.104001)

J. Liang, C. Jing, J. Wang, Y. Men, Molecules 26 (2021) 7054 (https://doi.org/10.3390/molecules26227054)

M. Ismael, J. Alloys Comp. 846 (2020) 156446 (https://doi.org/10.1016/j.jallcom.2020.156446)

N. S. N. Hasnan, M. A. Mohamed, Z. A. M. Hir, Adv. Mat. Technol. 7 (2021) 2100993 (https://doi.org/10.1002/admt.202100993)

J. Gu, Y. Yu, S. Chen, W. Shi, Y. Wang, Y. Liao, H. Chen, F. Jiang, Chem. Eng. J. 424 (2021) 130539 (https://doi.org/10.1016/j.cej.2021.130539)

Z. Mao, J. Chen, Y. Yang, L. Bie, B. D. Fahlman, D. Wang, Carbon 123 (2017) 651 (http://dx.doi.org/10.1016/j.carbon.2017.08.020)

Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang, G. Wang, Chem, 5 (2019) 664 (https://doi.org/10.1016/j.chempr.2018.12.009)

F. Yu, L. Wang, Q. Xing, D. Wang, X. Jiang, G. Li, A. Zheng, F. Ai, J. Zou, Chin. Chem. Lett. 31 (2020) 1648 (https://doi.org/10.1016/j.cclet.2019.08.020)

X. Bu, J. Li, S. Yang, J. Sun, Y. Deng, Y. Yang, G. Wang, Z. Peng, P. He, X. Wang, G. Ding, J. Yang, X. Xie, ACS Appl. Mat. Interf. 8 (2016) 31419 (https://doi.org/10.1021/acsami.6b10516)

Y. Li, Z. He, L. Liu, Y. Jiang, W. Ong, Y. Duan, W. Ho, F. Dong, Nano Energy 105 (2023) 108032 (https://doi.org/10.1016/j.nanoen.2022.108032)

J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72 (http://dx.doi.org/10.1016/j.apsusc.2016.07.030)

N. Sakakibara, M. Shizuno, T. Kanazawa, K. Kato, A. Yamakata, S. Nozawa, T. Ito, K. Terashima, K. Maeda, Y. Tamaki, O. Ishitani, ACS Appl. Mat. Interf. 15 (2023) 13205 (https://doi.org/10.1021/acsami.3c00955)

N. Lu, N. Liu, Y. Hui, K. Shang, N. Jiang, J. Li, Y. Wu, Chemosphere 241 (2020) 124927 (https://doi.org/10.1016/j.chemosphere.2019.124927)

L. Khezami, P. Nguyen-Tri, W. A. Saoud, A. Bouzaza, A. E. Jery, D. D. Nguyen, V. K. Gupta, A. A. Assadi, J. Env. Manag. 299 (2021) 113588 (https://doi.org/10.1016/j.jenvman.2021.113588)

Z. Zhang, J. L. Wilson, B. R. Kitt, D. W. Flaherty, ACS Appl. Poly. Mat. 3 (2021) 986 (https://dx.doi.org/10.1021/acsapm.0c01270)

J. Zhou, T. Wei, X. An, Phys. Chem. Chem. Phys. 25 (2023) 1538 (https://doi.org/10.1039/D2CP04836A)

X. Wang, Y. Chen, M. Fu, Z. Chen, Q. Huang, Chin. J. Catal. 39 (2018) 1672 (https://doi.org/10.1016/S1872-2067(18)63115-8)

Y. Zhao, E. Wang, R. Jin, Diam. Rel. Mat. 94 (2019) 146 (https://doi.org/10.1016/j.diamond.2019.03.004)

D. Wang, Z. Zhang, S. Xu, Y. Guo, S. Kang, X. Chang, Int. J. Mol. Sci: 23 (2022) 7381 (https://doi.org/10.3390/ijms23137381)

Z. Zhang, L. Cui, Y. Zhang, L. H. Klausen, M. Chen, D. Sun, S. Xu, S. Kang, J. Shi, Appl. Cat. B: Env. 297 (2021) 120441 (https://doi.org/10.1016/j.apcatb.2021.120441)

S. Xiang, Y. Lin, T. Chang, B. Mei, Y. Liang, Z. Wang, W. Sun, C. Cai, Chemosphere 338 (2023) 139539 (https://doi.org/10.1016/j.chemosphere.2023.139539)

W. Gan, J. Guo, X. Fu, J. Jin, M. Zhang, R. Chen, C. Ding, Y. Lu, J. Li, Z. Sun, Separ. Pur. Techn. 317 (2023) 123791 (https://doi.org/10.1016/j.seppur.2023.123791)

M. Z. Rahman, K. Davey, C. B. Mullins, Adv. Sci. 5 (2018) 1800820 (https://doi.org/10.1002/advs.201800820)

P. Qiu, C. Xu, H. Chen, F. Jiang, X. Wang, R. Lu, X. Zhang, Appl. Cat. B: Env. 206 (2017) 319 (https://doi.org/10.1016/j.apcatb.2017.01.058)

Y. Wei, Y. Liu, C. Liu, X. Li, K. Song, R. Wang, W. Chen, G. Zhao, R. Liu, H. Wang, G. Shi, G. Wang, ACS Appl. Nano Mat. 6 (2023) 16567 (https://doi.org/10.1021/acsanm.3c02762)

D. Wen, Y. Su, J. Fang, D. Zheng, Y. Xu, S. Zhou, A. Meng, P. Han, C. Wong, Nano Energy 117 (2023) 108917 (https://doi.org/10.1016/j.nanoen.2023.108917)

J. Yang, Y. Liang, G. Yang, K. Wang, Z. Zeng, Z. Xiong, Y. Han, J. Col. Interf. Sci. 607 (2022) 1527 (https://doi.org/10.1016/j.jcis.2021.09.112)

S. Zhang, Y. Liu, P. Gu, R. Ma, T. Wen, G. Zhao, L. Li, Y. Ai, C. Hu, X. Wang, Appl. Cat. B: Env. 248 (2019) 1 (https://doi.org/10.1016/j.apcatb.2019.02.008)

J. Zhang, B. Xin, C. Shan, W. Zhang, D. D. Dionysiou, B. Pan, Appl. Cat. B: Env. 292 (2021) 120155 (https://doi.org/10.1016/j.apcatb.2021.120155)

A. P. Alivisatos, Science 271 (1996) 933 (https://doi.org/10.1126/science.271.5251.933)

J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 13 (2017) 1603938 (https://doi.org/10.1002/smll.201603938)

G. Zhang, G. Li, Z. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Ang. Chemie Int. Ed. 56 (2017) 13445 (https://doi.org/10.1002/anie.201706870)

Z. Zhang, L. Cui, Y. Zhang, L. H. Klausen, M. Chen, D. Sun, S. Xu, S. Kang, J. Shi, Appl. Catal. B: Enviroн. 297 (2021) 120441 (https://doi.org/10.1016/j.apcatb.2021.120441)

T. N. Xuan, D. N. Thi, Q. T. Thuong, T. N. Ngoc, K. D. Quoc, Z. Molnár, S. Mukhtar, E. Szabó-Bárdos, O. Horváth, Molecules 28 (2023) 7810 (https://doi.org/10.3390/molecules28237810)

M. Guan, D. Ma, S. Hu, Y. Chen, S. Huang, Inorg. Chem. 50 (2010) 800 (https://doi.org/10.1021/ic101961z)

M. A. Butler, D. S. Ginley, J. Electrochem. Soc. 125 (1978) 228 (https://doi.org/10.1149/1.2131419)

S. Liu, D. Li, H. Sun, H. M. Ang, M. O. Tadé, S. Wang, J. Coll. Interf. Sci. 468 (2016) 176 (https://doi.org/10.1016/j.jcis.2016.01.051).

Most read articles by the same author(s)