Tuning crystal packing and reactivity through electrostatic and dispersion interactions: The case of phenytoin and its derivatives Scientific paper

Main Article Content

Ivana Đorđević
https://orcid.org/0000-0001-5981-9385
Sonja Grubišić
https://orcid.org/0000-0002-0864-1385
Dragana Mitić
https://orcid.org/0000-0001-5167-808X
Dragan M. Popović
https://orcid.org/0000-0001-6776-7271
Nemanja Trišović
https://orcid.org/0000-0002-9231-4810

Abstract

Hydantoin derivatives represent a versatile class of heterocycles, known for their pharmacological properties. Because drug efficacy often dep­ends on the fine-tuning of weak intermolecular (non-covalent) interactions, ana­lysis of the crystal structure of a drug molecule is important, as it enables deci­phering its interaction profile. In this study, the crystal packing of phenytoin and its selected derivatives were examined through dimeric motifs with different rec­ognition modes using force-field calculations and a density functional theory (DFT) approach. The relatively polar ethoxyacetyl group at the N3 position of the hydantoin ring, capable of forming hydrogen bonds, enhances the contri­bution of electrostatic and polar components to the total interaction energy. In contrast, the long alkyl chain promotes hydrophobic contacts, leading to dis­persion forces dominating over electrostatic interactions. The reactivity of phen­ytoin and its derivatives were further evaluated by examining the influence of these substituents using conceptual density functional theory (CDFT) des­cript­ors. These findings demonstrate that substituents significantly affect crystal packing and the balance of non-covalent interactions, providing valuable insights for optimizing molecular recognition and drug–target interactions in the design of new therapeutic agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Đorđević, S. Grubišić, D. Mitić, D. Popović, and N. Trišović, “Tuning crystal packing and reactivity through electrostatic and dispersion interactions: The case of phenytoin and its derivatives: Scientific paper”, J. Serb. Chem. Soc., Dec. 2025.
Section
Inorganic Chemistry

Funding data

References

S. Cho, S.-H. Kim, D. Shin, Eur. J. Med. Chem. 164 (2019) 517 (https://doi.org/10.1016/j.ejmech.2018.12.066)

W. Liu, S. Zhang, L. Xiao, Y. Wan, L. He, K. Wang, Z. Qi, X. Li, Pest Manage. Sci. 78 (2022) 1438 (https://doi.org/10.1002/ps.6761)

R. Rayhan, Md. S. H. Shishir, Md. A. Khaleque, Md. R. Amin, Md. R. Ali, M. A. S. Aly, S. M. Ayon, R. Saidur, T. H. Kim, Md. A. Zaed, Md. Z. Hossain, RSC Adv. 15 (2025) 24917 (https://doi.org/10.1039/D5RA03128A)

K. Kaewket, K. Ngamchuea, RSC Adv. 13 (2023) 33210 (https://doi.org/10.1039/D3RA06175B)

E. D. Akpan, O. Dagdag, E. E. Ebenso, Coord. Chem. Rev. 489 (2023) 215207 (https://doi.org/10.1016/j.ccr.2023.215207)

L. L. Brunton, B. C. Knollmann, Goodman & Gilman’s Pharmacological Basis of Therapeutics, 14th ed., L. L. Brunton, B. C. Knollmann, Eds., McGraw-Hill, New York, 2022, p. 1664 (ISBN 978-1264258079)

M. Rask-Andersen, M. Almén, H. Schiöth, Nat. Rev. Drug. Discov. 10 (2011) 579 (https://doi.org/10.1038/nrd3478)

W. Guerrab, El Jemli Meryem, A. Jihane, D. Güneş, T. M. Joel, T. Jamal, I. Azeddine, A. M’Hammed, A. Katim, R. Youssef, J. Biomol. Struct. Dyn. 40 (2021) 8765 (https://doi.org/10.1080/07391102.2021.1922096)

A. Domínguez, A. Álvarez, B. Suárez-Merino, F. Goñi-de-Cerio, Rev. Neurol. 58 (2014) 213 (https://pubmed.ncbi.nlm.nih.gov/24570360/)

H. L.Wong, X. Y. Wu, R. Bendayan, Adv. Drug Deliv. Rev. 64 (2012) 686 (https://doi.org/10.1016/j.addr.2011.10.007)

N. Trišović, N. Valentić, G. Uščumlić, Chem. Cen. J. 5 (2011) 62 (https://doi.org/10.1186/1752-153X-5-62)

J. R. Smythies, in Progress in Drug Research, G. H. Glaser, J. K. Penry, J. Kiffin, D. M. Woodbury, Eds., Raven, New York, 1980, p. 207

N. Trišović, N. Valentić, M. Erović, T. Ðaković-Sekulić, G. Uščumlić, I. Juranić, Monatsh. Chem. 142 (2011) 1227 (https://doi.org/10.1007/s00706-011-0639-7)

N. Trišović, T. Timić, J. Divljaković, J. Rogan, D. Poleti, M. M. Savić, G. Uščumlić, Monatsh. Chem. 143 (2012) 1451 (http://dx.doi.org/10.1007/s00706-012-0791-8)

W. M. Pardridge, Curr. Opin. Pharmacol. 6 (2006) 494 (https://doi.org/10.1016/j.coph.2006.06.001)

M. L. Brown, G. B. Brown, W. J. Brouillette, J. Med. Chem. 40 (1997) 602 (https://doi.org/10.1021/jm960692v)

P. R. Spackman, L. J. Yu, C. J. Morton, M. W. Parker, C. S. Bond, M. A. Spackman, D. Jayatilaka, S. P. Thomas, Angew. Chem. Int. Ed. 58 (2019) 16780 (https://doi.org/10.1002/anie.201906602)

M. Stöhr, T. Van Voorhis, A. Tkatchenko, Chem. Soc. Rev. 48 (2019) 4118 (https://doi.org/10.1039/C9CS00060G)

D. Wu, D. G. Truhlar, J. Chem. Theory Comput. 17 (2021) 3967 (https://doi.org/10.1021/acs.jctc.1c00162)

C. Tantardini, A. A. L. Michalchuk, A. Samtsevich, C. Rota, A. G. Kvashnin, Sci. Rep. 10 (2020) 7816 (https://doi.org/10.1038/s41598-020-64261-4)

S. Tretiakov, A-K. Nigam, R. Pollice, Chem. Rev. 125 (2025) 5776 (https://doi.org/10.1021/acs.chemrev.4c00893)

C. R. Groom, I. J. Bruno, M. P. Lightfoota, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)

Gaussian 09 (revision D.01), Gaussian, Inc., Wallingford, CT, 2009

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J Appl. Cryst. 54 (2021) 1006 (https://doi.org/10.1107/s1600576721002910)

C. F. Macrae, I. Sovago, S, J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M.Towler, P. A. Wood, J. Appl. Cryst. 53 (2020) 226 (https://doi.org/10.1107/S1600576719014092)

A. Gavezzotti, Acc. Chem. Res. 27 (1994) 309 (https://doi.org/10.1021/ar00046a004)

A. Gavezzotti, G. Filippini, J. Phys. Chem. 98 (1994) 4831 (https://doi.org/10.1021/j100069a010)

K. Chattopadhyay, R. A. Palmer, J. N. Lisgarten, J. Crystallogr. Spectrosc. Res. 23 (1993) 149 (https://doi.org/10.1007/BF01195449)

W. Guerrab, R. Akrad, M. Ansar, J. Taoufik, J. T. Mague, Y. Ramli, IUCrData 2 (2017) x171534 (https://doi.org/10.1107/S2414314617015346)

Y. Ramli, R. Akrad, W. Guerrab, J. Taoufik, M. Ansar, J. T. Mague, IUCrData 2 (2017) x170098 (https://doi.org/10.1107/S2414314617000980)

M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Chem. Comm. 51 (2015) 3735 (https://doi.org/10.1039/C4CC09074H)

M. A. Spackman, D, Jayatilaka, CrystEngComm 11 (2009) 19 (https://doi.org/10.1039/B818330A)

C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 4 (2017) 575 (https://doi.org/10.1107/S205225251700848X)

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (https://doi.org/10.1021/cr990029p)

P. Politzer, F. Abu-Awwad, Theor. Chem. Acc. 99 (1998) 87 (https://doi.org/10.1007/s002140050307).

Most read articles by the same author(s)