Omicron BA.2.86 Pirola nightmare: Empirical formulas and thermodynamic properties (enthalpy, entropy and Gibbs energy) of nucleocapsid, virus particle and biosynthesis of BA.2.86 Pirola variant of SARS-CoV-2

Main Article Content

Marko Popović
https://orcid.org/0000-0003-0934-5550
Marta Popović
Gavrilo Šekularac
https://orcid.org/0000-0002-6370-4983
Marijana Pantović Pavlović
https://orcid.org/0000-0002-9507-3469

Abstract

Similarly to a phoenix, SARS-CoV-2 has appeared periodically in waves. The new variants that appeared through mutations have suppressed earlier variants, causing new waves of the pandemic. The Omicron BA.2.86 Pirola variant is the latest in the sequence. An increased infectivity was noticed, which results in rapid spreading, as well as decreased pathogenicity, which results in a lower number of severe cases. However, in the public there is a fear of further development of the epidemic. This analysis was made with the goal to assess the risks in the period of early 2024. Mutations that were developed by the BA.2.86 variant have led to a change in empirical formula and thermodynamic properties. The empirical formula of the BA.2.86 virus particle is CH1.639023O0.284130N0.230031P0.006440S0.003765. It is different than those of other variants of SARS-CoV-2, other virus species and cellular organisms. The driving force for virus multiplication, Gibbs energy of biosynthesis, of the BA.2.86 variant is -221.75 kJ C-mol-1. It is more negative than that of its host tissue. According to the biosynthesis phenomenological equation, the more negative Gibbs energy of biosynthesis allows the virus to achieve a greater biosynthesis rate and hijack the host cell metabolism. However, Gibbs energy of biosynthesis of the BA.2.86 variant is similar to those of the CH.1.1 and XBB.1.16 variants. This means that these variants should have similar multiplications rates and thus similar pathogenicity. Therefore, it seems that there is no ground for fear of an extensive spreading of severe forms, but there are reasons for caution and monitoring of the spreading of the epidemic and potential appearance of new mutations. Moreover, unlike the earlier pandemic waves, during the newest pandemic wave, infections with influenza, RSV and BA.2.86 variant simultaneously appeared, which deserves an analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Popović, M. Popović, G. Šekularac, and M. Pantović Pavlović, “Omicron BA.2.86 Pirola nightmare: Empirical formulas and thermodynamic properties (enthalpy, entropy and Gibbs energy) of nucleocapsid, virus particle and biosynthesis of BA.2.86 Pirola variant of SARS-CoV-2”, J. Serb. Chem. Soc., Jun. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

G. Campi, A. Perali, A. Marcelli, A. Bianconi, Sci. Rep. 12 (2022) 18108 (https://doi.org/10.1038/s41598-022-22816-7)

E. C. Holmes, S. A. Goldstein, A. L. Rasmussen, D. L. Robertson, A. Crits-Christoph, J. O. Wertheim, S. J. Anthony, W. S. Barclay, M. F. Boni, P. C. Doherty, J. Farrar, J .L. Geoghegan, X. Jiang, J. L. Leibowitz, S. J. D. Neil, T. Skern, S. R. Weiss, M. Worobey, K. G. Andersen, R. F. Garry, A. Rambaut, Cell 184 (2021) 4848 (https://doi.org/10.1016/j.cell.2021.08.017)

N. Magazine, T. Zhang, Y. Wu, M. C. McGee, G. Veggiani, W. Huang, Viruses 14 (2022) 640 (https://doi.org/10.3390/v14030640)

K. Senthilazhagan, S. Sakthimani, D. Kallanja, S. Venkataraman, Arch.virol. 168 (2023) 186 (https://doi.org/10.1007/s00705-023-05818-2)

A. Aleem, A. B. Akbar Samad, S. Vaqar, Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19), in StatPearls. StatPearls Publishing.

M. Popovic, Microb. Risk Anal. 24 (2023) 100260 (https://doi.org/10.1016/j.mran.2023.100260)

M. Popovic, Microb. Risk Anal. 22 (2022) 100232 (https://doi.org/10.1016/j.mran.2022.100232)

M. E. Popovic, M. Mihailović, S. Pavlović, Microb. Risk Anal. 25 (2023) 100273 (https://doi.org/10.1016/j.mran.2023.100273)

M. Popovic, M. Pantović Pavlović, M. Pavlović, Microb. Risk Anal. 24 (2023) 100263 https://doi.org/10.1016/j.mran.2023.100263

CDC - Risk Assessment Summary for SARS CoV-2 Sublineage BA.2.86, https://www.cdc.gov/respiratory-viruses/whats-new/covid-19-variant.html#:~:text=Huma n%20cases%3A%20As%20of%20August,CDC's%20Traveler%2Dbased%20Genomic%20Surveillance, (Accessed on August 31, 2023)

Nextstrain - Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months, https://nextstrain.org/ncov/gisaid/global/6m?dmin=2023-06-19, (Accessed on January 31, 2024)

M. E. Popović, G. Šekularac, M. Popović, Microb. Risk Anal. 26 (2024) 100290 (https://doi.org/10.1016/j.mran.2024.100290)

M. Bartas, A. Volná, C. A. Beaudoin, E. T. Poulsen, J. Červeň, V. Brázda, V. Špunda, T. L. Blundell, P. Pečinka, Brief. Bioinf. 23 (2022) bbac045 (https://doi.org/10.1093/bib/bbac045)

W. Wu, Y. Cheng, H. Zhou, C. Sun, S. Zhang, Virol. J. 20 (2023) 6 (https://doi.org/10.1186/s12985-023-01968-6)

S. Kumar, S. K. Saxena, Methods 195 (2021) 23 (https://doi.org/10.1016/j.ymeth.2021.03.007)

P. Gale, Microb. Risk Anal. 21 (2022) 100198 (https://doi.org/10.1016/j.mran.2021.100198)

M. E. Popovic, Microbiol. Res. 270 (2023) 127337 (https://doi.org/10.1016/j.micres.2023.127337)

M. Popovic, Microb. Risk Anal. 23 (2023) 100250 (https://doi.org/10.1016/j.mran.2023.100250)

M. Popovic, Microb. Risk Anal. 23 (2023) 100249 (https://doi.org/10.1016/j.mran.2023.100249)

M. Popovic, M. Popovic, Microb. Risk Anal. 21 (2022) 100202 (https://doi.org/10.1016/j.mran.2022.100202)

P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, V. Thiel, Nat. Rev. Microbiol. 19 (2021) 155 (https://doi.org/10.1038/s41579-020-00468-6)

S. Duffy, PLoS biology 16 (2018) e3000003 (https://doi.org/10.1371/journal.pbio.3000003)

M. Popovic, Vaccines 10 (2022) 2112 (http://dx.doi.org/10.3390/vaccines10122112)

M. Popovic, Microbiol. Res. 13 (2022) 937 (http://dx.doi.org/10.3390/microbiolres13040066)

M. Popovic, Microb. Risk Anal. 22 (2022) 100217 (https://doi.org/10.1016/j.mran.2022.100217)

M. Popovic, Virology 575 (2022) 36 (https://doi.org/10.1016/j.virol.2022.08.009)

M. Popovic, Comp. Biol. Chem. 96 (2022) 107621 (https://doi.org/10.1016/j.compbiolchem.2022.107621)

E. H. Battley, Thermochimica Acta 326 (1999) 7 (https://doi.org/10.1016/S0040-6031(98)00584-X)

E. H. Battley, Thermochimica Acta 309 (1998) 17 (https://doi.org/10.1016/S0040-6031(97)00357-2)

M. Popovic, Heliyon 5 (2019) e01950 (https://doi.org/10.1016/j.heliyon.2019.e01950)

M. Popovic, G. B. G. Stenning, A. Göttlein, M. Minceva, J. Biotechn. 331 (2021) 99 (https://doi.org/10.1016/j.jbiotec.2021.03.006)

M. Popovic, Microb. Risk Anal. 22 (2022) 100236 (https://doi.org/10.1016/j.mran.2022.100236)

M. Popovic, Thermal Sci. 26 (2022) 4855 (https://doi.org/10.2298/TSCI220524142P)

C. Degueldre, Talanta 228 (2021) 122211 (https://doi.org/10.1016/j.talanta.2021.122211)

P. Gale, Microb. Risk Anal. 15 (2020) 100104 (https://doi.org/10.1016/j.mran.2020.100104)

T. Maskow, B. Kiesel, T. Schubert, Z. Yong, H. Harms, J. Yao, J. Virol. Met 168 (2010) 126 (https://doi.org/10.1016/j.jviromet.2010.05.002)

U. Lucia, G. Grisolia, T. S. Deisboeck, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 99 (2021) A3 (https://doi.org/10.1478/AAPP.992A3)

U. Lucia, G. Grisolia, T. S. Deisboeck, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 98 (2020) 6 (https://doi.org/10.1478/AAPP.982A6)

U. Lucia, T.S. Deisboeck, G. Grisolia, Front. Phys. 8 (2020) 274 (https://doi.org/10.3389/fphy.2020.00274)

R. J. Head, E. R. Lumbers, B. Jarrott, F. Tretter, G. Smith, K. G. Pringle, S. Islam, J. H. Martin, Pharm. Res. Persp. 10 (2022) e00922 (https://doi.org/10.1002/prp2.922)

M. Özilgen, B. Yilmaz, Int. J. Ener. Res. 45 (2021) 1157 (https://doi.org/10.1002/er.5883)

B. Yilmaz, S. Ercan, S. Akduman, M. Özilgen, Int. J. Exer. 32 (2020) 314 (http://dx.doi.org/10.1504/IJEX.2020.10030515)

S. Khare, C. Gurry, L. Freitas, M .B. Schultz, G. Bach, A. Diallo, N. Akite, J. Ho, R. T. C. Lee, W. Yeo, GISAID Core Curation Team, S.Maurer-Stroh, China CDC Weekly 3 (2021) 1049 (https://doi.org/10.46234/ccdcw2021.255)

E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, S. T. Sherry, Nuc. Ac. Res. 50 (2022) D20 (https://doi.org/10.1093/nar/gkab1112)

B. W. Neuman, M. J. Buchmeier, Adv. Vir. Res. 96 (2016) 1 (https://doi.org/10.1016/bs.aivir.2016.08.005)

M. Popovic, V. Tadić, M. Mihailović, J. Biomol. Struct. Dyn. (2023) 1 (https://doi.org/10.1080/07391102.2023.2256880)

U. Von Stockar, Biothermodynamics of live cells: energy dissipation and heat generation in cellular structures, in Biothermodynamics: the role of thermodynamics in Biochemical Engineering, U. von Stockar, Ed., EPFL Press, Lausanne, Switzerland, 2013, 475-534.

M. E. Popovic, M. Minceva, Thermal Sci. 24 (2020) 4115 (https://doi.org/10.2298/TSCI200109151P)

R. T. Balmer, Modern Engineering Thermodynamics, Academic Press, Cambridge, MA, USA, 2010. (https://doi.org/10.1016/C2009-0-20199-1)

M. Popovic, M. Minceva, Microorganisms 9 (2021) 2060 (https://doi.org/10.3390/microorganisms9102060)

D. A. Milenković, D. S. Dimić, E. H. Avdović, Z. S. Marković, RSC Adv. 10 (2020) 35099 (https://doi.org/10.1039/d0ra07062a)

Ž. B. Milanović, M. R. Antonijević, A. D. Amić, E. H. Avdović, D. S. Dimić, D. A. Milenković, Z. S. Marković, RSC Adv. 11 (2021), 2838 (https://doi.org/10.1039/d0ra09632f).

Most read articles by the same author(s)