Omicron BA.2.86 Pirola nightmare: Empirical formulas and thermodynamic properties (enthalpy, entropy and Gibbs energy change) of nucleocapsid, virus particle and biosynthesis of BA.2.86 Pirola variant of SARS-CoV-2 Scientific paper
Main Article Content
Abstract
Similarly to a phoenix, SARS-CoV-2 has appeared periodically in waves. The new variants that appeared through mutations have suppressed earlier variants, causing new waves of the pandemic. The Omicron BA.2.86 Pirola variant is the latest in the sequence. An increased infectivity was noticed, which results in rapid spreading, as well as decreased pathogenicity, which results in a lower number of severe cases. However, in the public there is a fear of further development of the epidemic. This analysis was made with the goal to assess the risks in the period of early 2024. Mutations that were developed by the BA.2.86 variant have led to a change in empirical formula and thermodynamic properties. The empirical formula of the BA.2.86 virus particle is CH1.639023O0.284130N0.230031P0.006440S0.003765. It is different than those of other variants of SARS-CoV-2, other virus species and cellular organisms. The driving force for the virus multiplication, Gibbs energy change of biosynthesis of the BA.2.86 variant is –221.75 kJ C-mol-1. It is more negative than that of its host tissue. According to the biosynthesis phenomenological equation, the more negative Gibbs energy change of biosynthesis allows the virus to achieve a greater biosynthesis rate and hijack the host cell metabolism. However, the Gibbs energy change of biosynthesis of the BA.2.86 variant is similar to those of the CH.1.1 and XBB.1.16 variants. This means that these variants should have similar multiplication rates and thus similar pathogenicity. Therefore, it seems that there is no ground for fear of an extensive spreading of severe forms, but there are reasons for caution and monitoring of the spreading of the epidemic and potential appearance of new mutations. Moreover, unlike the earlier pandemic waves, during the newest pandemic wave, the infections with influenza, RSV and BA.2.86 variant simultaneously appeared, which deserves an analysis.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-66/2024-03/200026
References
G. Campi, A. Perali, A. Marcelli, A. Bianconi, Sci. Rep. 12 (2022) 18108 (https://doi.org/10.1038/s41598-022-22816-7)
E. C. Holmes, S. A. Goldstein, A. L. Rasmussen, D. L. Robertson, A. Crits-Christoph, J. O. Wertheim, S. J. Anthony, W. S. Barclay, M. F. Boni, P. C. Doherty, J. Farrar, J .L. Geoghegan, X. Jiang, J. L. Leibowitz, S. J. D. Neil, T. Skern, S. R. Weiss, M. Worobey, K. G. Andersen, R. F. Garry, A. Rambaut, Cell 184 (2021) 4848 (https://doi.org/10.1016/j.cell.2021.08.017)
N. Magazine, T. Zhang, Y. Wu, M. C. McGee, G. Veggiani, W. Huang, Viruses 14 (2022) 640 (https://doi.org/10.3390/v14030640)
K. Senthilazhagan, S. Sakthimani, D. Kallanja, S. Venkataraman, Arch. virol. 168 (2023) 186 (https://doi.org/10.1007/s00705-023-05818-2)
A. Aleem, A. B. Akbar Samad, S. Vaqar, in StatPearls, StatPearls Publishing, St. Petersburg, FL, 2023
M. Popovic, Microb. Risk Anal. 24 (2023) 100260 (https://doi.org/10.1016/j.mran.2023.100260)
M. Popovic, Microb. Risk Anal. 22 (2022) 100232 (https://doi.org/10.1016/j.mran.2022.100232)
M. E. Popovic, M. Mihailović, S. Pavlović, Microb. Risk Anal. 25 (2023) 100273 (https://doi.org/10.1016/j.mran.2023.100273)
M. Popovic, M. Pantović Pavlović, M. Pavlović, Microb. Risk Anal. 24 (2023) 100263 https://doi.org/10.1016/j.mran.2023.100263
CDC - Risk Assessment Summary for SARS CoV-2 Sublineage BA.2.86, https://www.cdc.gov/respiratory-viruses/whats-new/covid-19-variant.html#:~:text=Huma n%20cases%3A%20As%20of%20August,CDC's%20Traveler%2Dbased%20Genomic%20Surveillance (accessed on August 31, 2023)
Nextstrain - Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months, https://nextstrain.org/ncov/gisaid/global/6m?dmin=2023-06-19 (accessed on January 31, 2024)
M. E. Popović, G. Šekularac, M. Popović, Microb. Risk Anal. 26 (2024) 100290 (https://doi.org/10.1016/j.mran.2024.100290)
M. Bartas, A. Volná, C. A. Beaudoin, E. T. Poulsen, J. Červeň, V. Brázda, V. Špunda, T. L. Blundell, P. Pečinka, Brief. Bioinf. 23 (2022) bbac045 (https://doi.org/10.1093/bib/bbac045)
W. Wu, Y. Cheng, H. Zhou, C. Sun, S. Zhang, Virol. J. 20 (2023) 6 (https://doi.org/10.1186/s12985-023-01968-6)
S. Kumar, S. K. Saxena, Methods 195 (2021) 23 (https://doi.org/10.1016/j.ymeth.2021.03.007)
P. Gale, Microb. Risk Anal. 21 (2022) 100198 (https://doi.org/10.1016/j.mran.2021.100198)
M. E. Popovic, Microbiol. Res. 270 (2023) 127337 (https://doi.org/10.1016/j.micres.2023.127337)
M. Popovic, Microb. Risk Anal. 23 (2023) 100250 (https://doi.org/10.1016/j.mran.2023.100250)
M. Popovic, Microb. Risk Anal. 23 (2023) 100249 (https://doi.org/10.1016/j.mran.2023.100249)
M. Popovic, M. Popovic, Microb. Risk Anal. 21 (2022) 100202 (https://doi.org/10.1016/j.mran.2022.100202)
P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, V. Thiel, Nat. Rev. Microbiol. 19 (2021) 155 (https://doi.org/10.1038/s41579-020-00468-6)
S. Duffy, PLoS Biol. 16 (2018) e3000003 (https://doi.org/10.1371/journal.pbio.3000003)
M. Popovic, Vaccines 10 (2022) 2112 (http://dx.doi.org/10.3390/vaccines10122112)
M. Popovic, Microbiol. Res. 13 (2022) 937 (http://dx.doi.org/10.3390/microbiolres13040066)
M. Popovic, Microb. Risk Anal. 22 (2022) 100217 (https://doi.org/10.1016/j.mran.2022.100217)
M. Popovic, Virology 575 (2022) 36 (https://doi.org/10.1016/j.virol.2022.08.009)
M. Popovic, Comp. Biol. Chem. 96 (2022) 107621 (https://doi.org/10.1016/j.compbiolchem.2022.107621)
E. H. Battley, Thermochim. Acta 326 (1999) 7 (https://doi.org/10.1016/S0040-6031(98)00584-X)
E. H. Battley, Thermochim. Acta 309 (1998) 17 (https://doi.org/10.1016/S0040-6031(97)00357-2)
M. Popovic, Heliyon 5 (2019) e01950 (https://doi.org/10.1016/j.heliyon.2019.e01950)
M. Popovic, G. B. G. Stenning, A. Göttlein, M. Minceva, J. Biotechnol. 331 (2021) 99 (https://doi.org/10.1016/j.jbiotec.2021.03.006)
M. Popovic, Microb. Risk Anal. 22 (2022) 100236 (https://doi.org/10.1016/j.mran.2022.100236)
M. Popovic, Thermal Sci. 26 (2022) 4855 (https://doi.org/10.2298/TSCI220524142P)
C. Degueldre, Talanta 228 (2021) 122211 (https://doi.org/10.1016/j.talanta.2021.122211)
P. Gale, Microb. Risk Anal. 15 (2020) 100104 (https://doi.org/10.1016/j.mran.2020.100104)
T. Maskow, B. Kiesel, T. Schubert, Z. Yong, H. Harms, J. Yao, J. Virol. Met 168 (2010) 126 (https://doi.org/10.1016/j.jviromet.2010.05.002)
U. Lucia, G. Grisolia, T. S. Deisboeck, Atti Accad. Peloritana Pericolanti-Classe Sci. Fis. Mat. Natur. 99 (2021) A3 (https://doi.org/10.1478/AAPP.992A3)
U. Lucia, G. Grisolia, T. S. Deisboeck, Atti Accad. Peloritana Pericolanti-Classe Sci. Fis. Mat. Natur. 98 (2020) 6 (https://doi.org/10.1478/AAPP.982A6)
U. Lucia, T.S. Deisboeck, G. Grisolia, Front. Phys. 8 (2020) 274 (https://doi.org/10.3389/fphy.2020.00274)
R. J. Head, E. R. Lumbers, B. Jarrott, F. Tretter, G. Smith, K. G. Pringle, S. Islam, J. H. Martin, Pharm. Res. Persp. 10 (2022) e00922 (https://doi.org/10.1002/prp2.922)
M. Özilgen, B. Yilmaz, Int. J. Ener. Res. 45 (2021) 1157 (https://doi.org/10.1002/er.5883)
B. Yilmaz, S. Ercan, S. Akduman, M. Özilgen, Int. J. Exer. 32 (2020) 314 (http://dx.doi.org/10.1504/IJEX.2020.10030515)
S. Khare, C. Gurry, L. Freitas, M .B. Schultz, G. Bach, A. Diallo, N. Akite, J. Ho, R. T. C. Lee, W. Yeo, GISAID Core Curation Team, S.Maurer-Stroh, China CDC Weekly 3 (2021) 1049 (https://doi.org/10.46234/ccdcw2021.255)
E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, S. T. Sherry, Nuc. Ac. Res. 50 (2022) D20 (https://doi.org/10.1093/nar/gkab1112)
B. W. Neuman, M. J. Buchmeier, Adv. Vir. Res. 96 (2016) 1 (https://doi.org/10.1016/bs.aivir.2016.08.005)
M. Popovic, V. Tadić, M. Mihailović, J. Biomol. Struct. Dyn. (2023) 1 (https://doi.org/10.1080/07391102.2023.2256880)
U. Von Stockar, in Biothermodynamics: the role of thermodynamics in Biochemical Engineering, U. von Stockar, Ed., EPFL Press, Lausanne, 2013, pp. 475–534
M. E. Popovic, M. Minceva, Thermal Sci. 24 (2020) 4115 (https://doi.org/10.2298/TSCI200109151P)
R. T. Balmer, Modern Engineering Thermodynamics, Academic Press, Cambridge, MA, USA, 2010. (https://doi.org/10.1016/C2009-0-20199-1)
M. Popovic, M. Minceva, Microorganisms 9 (2021) 2060 (https://doi.org/10.3390/microorganisms9102060)
D. A. Milenković, D. S. Dimić, E. H. Avdović, Z. S. Marković, RSC Adv. 10 (2020) 35099 (https://doi.org/10.1039/d0ra07062a)
Ž. B. Milanović, M. R. Antonijević, A. D. Amić, E. H. Avdović, D. S. Dimić, D. A. Milenković, Z. S. Marković, RSC Adv. 11 (2021), 2838 (https://doi.org/10.1039/d0ra09632f).