A computational study to identify the metabolites in Lippia alba capable of inhibiting gastric cancer through BCL-2 protein inhibition

Main Article Content

Luis Humberto Mendoza-Huizar
https://orcid.org/0000-0003-2373-4624

Abstract

In this study, a computational analysis was performed to evaluate the therapeutic potential of 73 compounds from Lippia alba as candidates for gastric cancer treatment. Most compounds exhibited low toxicity, except for 4-methylpent-2-enolide and β-acorenol, which demonstrated significant toxic effects. Molecular docking studies revealed that (Z)-nerolidol and 13-hydroxy-valencene both bind to the BCL2 protein, a key regulator of apoptosis in cancer cells. Furthermore, ADMET analysis predicted that both compounds are non-toxic. Molecular dynamics simulations showed that only (Z)-nerolidol maintained a stable interaction with domain 4 of BCL2, specifically with the critical Lys17 residue, which is essential for BCL2's inhibitory function. QM/MM calculations confirmed the formation of hydrogen bonds between (Z)-nerolidol and Lys17, Ile14, and Ser49, with an estimated binding energy of −62.47 kJ mol-1, suggesting a stable protein-ligand complex. These findings support the potential of (Z)-nerolidol as a lead compound for BCL2 inhibition and highlight its promise as a novel therapeutic agent for gastric cancer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. H. Mendoza-Huizar, “A computational study to identify the metabolites in Lippia alba capable of inhibiting gastric cancer through BCL-2 protein inhibition”, J. Serb. Chem. Soc., Nov. 2025.
Section
Theoretical Chemistry
Author Biography

Luis Humberto Mendoza-Huizar, Universidad Autónoma del Estado de Hidalgo, Academic Area of Chemistry, Carretera Pachuca-Tulancingo Km. 4.5, CP. 42184. Mineral de la Reforma, México

Academic Area of Chemistry, Researcher

References

A. Sarkar, A. Paul, T. Banerjee, A. Maji, S. Saha, A. Bishayee, T. K. Maity, Eur. J. Pharmacol. 944 (2023) 175588 (http://dx.doi.org/10.1016/J.EJPHAR.2023.175588)

H. R. Khouzani, M. R. Maleki, A. Zackery, E. Mazloumi, M. Jalilzadeh, M. Sahebzadeh, Heliyon 10 (2024) e40437 (http://dx.doi.org/10.1016/J.HELIYON.2024.E40437)

M. Ilic, I. Ilic, World J. Gastroenterol. 28 (2022) 1187–1203 (http://dx.doi.org/10.3748/WJG.V28.I12.1187)

R. Panahizadeh, P. Panahi, V. Asghariazar, S. Makaremi, G. Noorkhajavi, E. Safarzadeh, Cancer Cell Int. 2025 251 25 (2025) 1–20 (http://dx.doi.org/10.1186/S12935-025-03655-8)

E. Morgan, M. Arnold, M. C. Camargo, A. Gini, A. T. Kunzmann, T. Matsuda, F. Meheus, R. H. A. Verhoeven, J. Vignat, M. Laversanne, J. Ferlay, I. Soerjomataram, EClinicalMedicine 47 (2022) 101404 (http://dx.doi.org/10.1016/J.ECLINM.2022.101404)

T. I. Mamun, S. Younus, M. H. Rahman, Cancer Treat. Res. Commun. 41 (2024) 100845 (http://dx.doi.org/10.1016/J.CTARC.2024.100845)

S. S. Joshi, B. D. Badgwell, CA. Cancer J. Clin. 71 (2021) 264 (http://dx.doi.org/10.3322/CAAC.21657)

Q. Yin, Y. Zhang, X. Xie, M. Hou, X. Chen, J. Ding, Cell Death Discov. 2025 111 11 (2025) 1–17 (http://dx.doi.org/10.1038/s41420-025-02429-5)

B. Zhao, W. Lv, J. Lin, Curr. Probl. Cancer 44 (2020) 100577 (http://dx.doi.org/10.1016/J.CURRPROBLCANCER.2020.100577)

W. Leowattana, P. Leowattana, T. Leowattana, F. Professor, World J. Methodol. 13 (2023) 79 (http://dx.doi.org/10.5662/WJM.V13.I3.79)

D. Luo, Y. Liu, Z. Lu, L. Huang, Mol. Med. 2025 311 31 (2025) 1–27 (http://dx.doi.org/10.1186/S10020-025-01075-Y)

C. D. Iwu, C. J. Iwu-Jaja, Hyg. 2023, Vol. 3, Pages 256-268 3 (2023) 256–268 (http://dx.doi.org/10.3390/HYGIENE3030019)

Z. Liu, C. Wild, Y. Ding, N. Ye, H. Chen, E. A. Wold, J. Zhou, Drug Discov. Today 21 (2016) 989–996 (http://dx.doi.org/10.1016/j.drudis.2015.11.008)

Y. Qu, X. Yang, J. Li, S. Zhang, S. Li, M. Wang, L. Zhou, Z. Wang, Z. Lin, Y. Yin, J. Liu, N. Wang, Y. Yang, Evid. Based. Complement. Alternat. Med. 2021 (2021) 2311486 (http://dx.doi.org/10.1155/2021/2311486)

Y. Q. Ma, M. Zhang, Z. H. Sun, H. Y. Tang, Y. Wang, J. X. Liu, Z. X. Zhang, C. Wang, World J. Gastrointest. Oncol. 16 (2024) 493 (http://dx.doi.org/10.4251/WJGO.V16.I2.493)

N. Bahadar, S. Bahadar, A. Sajid, M. Wahid, G. Ali, A. Alghamdi, H. Zada, T. Khan, S. Ullah, Q. Sun, Breast Cancer Res. 26 (2024) 114 (http://dx.doi.org/10.1186/S13058-024-01868-9)

K. Kai, J. Han-bing, C. Bing-lin, Z. Shu-jun, Heliyon 9 (2023) e17393 (http://dx.doi.org/10.1016/J.HELIYON.2023.E17393)

S. Dey, A. K. Singh, S. Kumar, Biointerface Res. Appl. Chem. 13 (2022) 1–12 (http://dx.doi.org/10.33263/BRIAC135.473)

S. Montero Villegas, J. F. Ciccio Alberti, X. Cortés Bratti, R. Crespo, M. Polo, M. García de Bravo, Terc. Epoca. Rev. Cient. La Fcaultad Ciencias Médicas 2 (2010) 1–1. (http://sedici.unlp.edu.ar/handle/10915/15469)

M. Á. Ramírez-García, J. E. Márquez-González, Horacio Barranco-Lampón, Gilberto López-Aguilar, El Resid. 9 (2014) 84–94 (http://dx.doi.org/10.5754/hge11946)

E. E. Stashenko, B. E. Jaramillo, J. R. Martínez, Rev. Acad. Colomb. Ciencias 27 (2003) 579–597 (http://dx.doi.org/10.18257/ssn.0370-3908)

R. Claveria-Gimeno, S. Vega, O. Abian, A. Velazquez-Campoy, Expert Opin. Drug Discov. 12 (2017) 363–377 (http://dx.doi.org/10.1080/17460441.2017.1297418)

X. Du, Y. Li, Y. L. Xia, S. M. Ai, J. Liang, P. Sang, X. L. Ji, S. Q. Liu, Int. J. Mol. Sci. 17 (2016) 1–34 (http://dx.doi.org/10.3390/ijms17020144)

M. E. Popović, V. Tadić, M. Popović, Virology 603 (2025) (http://dx.doi.org/10.1016/j.virol.2024.110319)

W. López-Orozco, L. H. Mendoza-Huizar, G. A. Álvarez-Romero, J. de Jesús Martin Torres-Valencia, J. Serbian Chem. Soc. 90 (2025) 291–303 (http://dx.doi.org/10.2298/JSC240428074L)

L. Silva-Santos, L. Palhares Neto, N. Corte-Real, M. V. L. Sperandio, C. A. G. Camara, M. M. Moraes, C. Ulisses, South African J. Bot. 163 (2023) 756–769 (http://dx.doi.org/10.1016/j.sajb.2023.10.024)

P. T. de Souza Silva, L. M. de Souza, M. B. de Morais, M. M. de Moraes, C. A. G. da Camara, C. Ulisses, South African J. Bot. 147 (2022) 415–424 (http://dx.doi.org/10.1016/j.sajb.2022.01.042)

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 53 (2025) D1516–D1525 (http://dx.doi.org/10.1093/NAR/GKAE1059)

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 28 (2000) 235–242 (http://dx.doi.org/10.1093/NAR/28.1.235)

A. M. Petros, A. Medek, D. G. Nettesheim, D. H. Kim, H. S. Yoon, K. Swift, E. D. Matayoshi, T. Oltersdorf, S. W. Fesik, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 3012–3017 (http://dx.doi.org/10.1073/pnas.041619798))

C. A. Lipinski, Drug Discov. Today Technol. 1 (2004) 337–341 (http://dx.doi.org/10.1016/J.DDTEC.2004.11.007)

G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, Nucleic Acids Res. 49 (2021) W5–W14 (http://dx.doi.org/10.1093/nar/gkab255)

A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7 (2017) 1–13 (http://dx.doi.org/10.1038/srep42717)

A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39 (2011) W270 (http://dx.doi.org/10.1093/NAR/GKR366)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. (2004) (http://dx.doi.org/10.1002/jcc.20084)

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 1–2 (2015) 19–25 (http://dx.doi.org/10.1016/J.SOFTX.2015.06.001)

M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100 (1996) 19357–19363 (http://dx.doi.org/10.1021/JP962071J;CTYPE:STRING:JOURNAL)

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009. (https://gaussian.com/g09citation/)

Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh, PA. (https://gaussian.com/508_gvw/)

A. Meller, M. Ward, J. Borowsky, M. Kshirsagar, J. M. Lotthammer, F. Oviedo, J. L. Ferres, G. R. Bowman, Nat. Commun. 14 (2023) (http://dx.doi.org/10.1038/s41467-023-36699-3)

L. Jendele, R. Krivak, P. Skoda, M. Novotny, D. Hoksza, Nucleic Acids Res. 47 (2019) W345–W349 (http://dx.doi.org/10.1093/nar/gkz424)

V. Sharma, A. Gupta, M. Singh, A. Singh, A. A. Chaudhary, Z. H. Ahmed, S. U. D. Khan, S. Rustagi, S. Kumar, S. Kumar, Front. Bioinforma. 5 (2025) 1–13 (http://dx.doi.org/10.3389/fbinf.2025.1545353)

M. Popovic, Virology 570 (2022) 35–44 (http://dx.doi.org/10.1016/j.virol.2022.03.008)

M. Popovic, Microb. Risk Anal. 22 (2022) 100231 (http://dx.doi.org/10.1016/j.mran.2022.100231)

E. Wolf, C. Lento, J. Pu, B. C. Dickinson, D. J. Wilson, Biochemistry 62 (2023) 1619–1630 (http://dx.doi.org/10.1021/acs.biochem.2c00709)

J. Fanfrlík, A. K. Bronowska, J. Řezáč, O. Přenosil, J. Konvalinka, P. Hobza, J. Phys. Chem. B 114 (2010) 12666–12678 (http://dx.doi.org/10.1021/JP1032965)

J. Řezáč, J. Fanfrlík, D. Salahub, P. Hobza, J. Chem. Theory Comput. 5 (2009) 1749–1760 (https://doi.org/10.1021/ct9000922)

J. J. P. Stewart, J. Mol. Model. 13 (2007) 1173–1213 (http://dx.doi.org/10.1007/s00894-007-0233-4)

A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024–10035 (https://doi.org/10.1021/ja00051a040)

Z. Kazemi, H. A. Rudbari, M. Sahihi, V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, S. Gharaghani, J. Photochem. Photobiol. B Biol. 162 (2016) 448–462 (http://dx.doi.org/10.1016/J.JPHOTOBIOL.2016.07.003)

G. R. . Desiraju, T. Steiner, The weak hydrogen bond : in structural chemistry and biology, Oxford University Press, 2001

Biovia Dassault Systèmes, Discovery Studio Visualiser 2019, Dassault Systèmes, San Diego, 2020 (http://dx.doi.org/https://discover.3ds.com/discovery-studio-visualizer-download).

Most read articles by the same author(s)