A computational study to identify the metabolites in Lippia alba capable of inhibiting gastric cancer through BCL-2 protein inhibition
Main Article Content
Abstract
In this study, a computational analysis was performed to evaluate the therapeutic potential of 73 compounds from Lippia alba as candidates for gastric cancer treatment. Most compounds exhibited low toxicity, except for 4-methylpent-2-enolide and β-acorenol, which demonstrated significant toxic effects. Molecular docking studies revealed that (Z)-nerolidol and 13-hydroxy-valencene both bind to the BCL2 protein, a key regulator of apoptosis in cancer cells. Furthermore, ADMET analysis predicted that both compounds are non-toxic. Molecular dynamics simulations showed that only (Z)-nerolidol maintained a stable interaction with domain 4 of BCL2, specifically with the critical Lys17 residue, which is essential for BCL2's inhibitory function. QM/MM calculations confirmed the formation of hydrogen bonds between (Z)-nerolidol and Lys17, Ile14, and Ser49, with an estimated binding energy of −62.47 kJ mol-1, suggesting a stable protein-ligand complex. These findings support the potential of (Z)-nerolidol as a lead compound for BCL2 inhibition and highlight its promise as a novel therapeutic agent for gastric cancer.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Laboratorio Nacional de Supercómputo del Sureste de Mexico
Grant numbers 202501011N -
Consejo Nacional de Ciencia y Tecnología, Guatemala
Grant numbers CONACyT 123732
References
A. Sarkar, A. Paul, T. Banerjee, A. Maji, S. Saha, A. Bishayee, T. K. Maity, Eur. J. Pharmacol. 944 (2023) 175588 (http://dx.doi.org/10.1016/J.EJPHAR.2023.175588)
H. R. Khouzani, M. R. Maleki, A. Zackery, E. Mazloumi, M. Jalilzadeh, M. Sahebzadeh, Heliyon 10 (2024) e40437 (http://dx.doi.org/10.1016/J.HELIYON.2024.E40437)
M. Ilic, I. Ilic, World J. Gastroenterol. 28 (2022) 1187–1203 (http://dx.doi.org/10.3748/WJG.V28.I12.1187)
R. Panahizadeh, P. Panahi, V. Asghariazar, S. Makaremi, G. Noorkhajavi, E. Safarzadeh, Cancer Cell Int. 2025 251 25 (2025) 1–20 (http://dx.doi.org/10.1186/S12935-025-03655-8)
E. Morgan, M. Arnold, M. C. Camargo, A. Gini, A. T. Kunzmann, T. Matsuda, F. Meheus, R. H. A. Verhoeven, J. Vignat, M. Laversanne, J. Ferlay, I. Soerjomataram, EClinicalMedicine 47 (2022) 101404 (http://dx.doi.org/10.1016/J.ECLINM.2022.101404)
T. I. Mamun, S. Younus, M. H. Rahman, Cancer Treat. Res. Commun. 41 (2024) 100845 (http://dx.doi.org/10.1016/J.CTARC.2024.100845)
S. S. Joshi, B. D. Badgwell, CA. Cancer J. Clin. 71 (2021) 264 (http://dx.doi.org/10.3322/CAAC.21657)
Q. Yin, Y. Zhang, X. Xie, M. Hou, X. Chen, J. Ding, Cell Death Discov. 2025 111 11 (2025) 1–17 (http://dx.doi.org/10.1038/s41420-025-02429-5)
B. Zhao, W. Lv, J. Lin, Curr. Probl. Cancer 44 (2020) 100577 (http://dx.doi.org/10.1016/J.CURRPROBLCANCER.2020.100577)
W. Leowattana, P. Leowattana, T. Leowattana, F. Professor, World J. Methodol. 13 (2023) 79 (http://dx.doi.org/10.5662/WJM.V13.I3.79)
D. Luo, Y. Liu, Z. Lu, L. Huang, Mol. Med. 2025 311 31 (2025) 1–27 (http://dx.doi.org/10.1186/S10020-025-01075-Y)
C. D. Iwu, C. J. Iwu-Jaja, Hyg. 2023, Vol. 3, Pages 256-268 3 (2023) 256–268 (http://dx.doi.org/10.3390/HYGIENE3030019)
Z. Liu, C. Wild, Y. Ding, N. Ye, H. Chen, E. A. Wold, J. Zhou, Drug Discov. Today 21 (2016) 989–996 (http://dx.doi.org/10.1016/j.drudis.2015.11.008)
Y. Qu, X. Yang, J. Li, S. Zhang, S. Li, M. Wang, L. Zhou, Z. Wang, Z. Lin, Y. Yin, J. Liu, N. Wang, Y. Yang, Evid. Based. Complement. Alternat. Med. 2021 (2021) 2311486 (http://dx.doi.org/10.1155/2021/2311486)
Y. Q. Ma, M. Zhang, Z. H. Sun, H. Y. Tang, Y. Wang, J. X. Liu, Z. X. Zhang, C. Wang, World J. Gastrointest. Oncol. 16 (2024) 493 (http://dx.doi.org/10.4251/WJGO.V16.I2.493)
N. Bahadar, S. Bahadar, A. Sajid, M. Wahid, G. Ali, A. Alghamdi, H. Zada, T. Khan, S. Ullah, Q. Sun, Breast Cancer Res. 26 (2024) 114 (http://dx.doi.org/10.1186/S13058-024-01868-9)
K. Kai, J. Han-bing, C. Bing-lin, Z. Shu-jun, Heliyon 9 (2023) e17393 (http://dx.doi.org/10.1016/J.HELIYON.2023.E17393)
S. Dey, A. K. Singh, S. Kumar, Biointerface Res. Appl. Chem. 13 (2022) 1–12 (http://dx.doi.org/10.33263/BRIAC135.473)
S. Montero Villegas, J. F. Ciccio Alberti, X. Cortés Bratti, R. Crespo, M. Polo, M. García de Bravo, Terc. Epoca. Rev. Cient. La Fcaultad Ciencias Médicas 2 (2010) 1–1. (http://sedici.unlp.edu.ar/handle/10915/15469)
M. Á. Ramírez-García, J. E. Márquez-González, Horacio Barranco-Lampón, Gilberto López-Aguilar, El Resid. 9 (2014) 84–94 (http://dx.doi.org/10.5754/hge11946)
E. E. Stashenko, B. E. Jaramillo, J. R. Martínez, Rev. Acad. Colomb. Ciencias 27 (2003) 579–597 (http://dx.doi.org/10.18257/ssn.0370-3908)
R. Claveria-Gimeno, S. Vega, O. Abian, A. Velazquez-Campoy, Expert Opin. Drug Discov. 12 (2017) 363–377 (http://dx.doi.org/10.1080/17460441.2017.1297418)
X. Du, Y. Li, Y. L. Xia, S. M. Ai, J. Liang, P. Sang, X. L. Ji, S. Q. Liu, Int. J. Mol. Sci. 17 (2016) 1–34 (http://dx.doi.org/10.3390/ijms17020144)
M. E. Popović, V. Tadić, M. Popović, Virology 603 (2025) (http://dx.doi.org/10.1016/j.virol.2024.110319)
W. López-Orozco, L. H. Mendoza-Huizar, G. A. Álvarez-Romero, J. de Jesús Martin Torres-Valencia, J. Serbian Chem. Soc. 90 (2025) 291–303 (http://dx.doi.org/10.2298/JSC240428074L)
L. Silva-Santos, L. Palhares Neto, N. Corte-Real, M. V. L. Sperandio, C. A. G. Camara, M. M. Moraes, C. Ulisses, South African J. Bot. 163 (2023) 756–769 (http://dx.doi.org/10.1016/j.sajb.2023.10.024)
P. T. de Souza Silva, L. M. de Souza, M. B. de Morais, M. M. de Moraes, C. A. G. da Camara, C. Ulisses, South African J. Bot. 147 (2022) 415–424 (http://dx.doi.org/10.1016/j.sajb.2022.01.042)
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 53 (2025) D1516–D1525 (http://dx.doi.org/10.1093/NAR/GKAE1059)
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 28 (2000) 235–242 (http://dx.doi.org/10.1093/NAR/28.1.235)
A. M. Petros, A. Medek, D. G. Nettesheim, D. H. Kim, H. S. Yoon, K. Swift, E. D. Matayoshi, T. Oltersdorf, S. W. Fesik, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 3012–3017 (http://dx.doi.org/10.1073/pnas.041619798))
C. A. Lipinski, Drug Discov. Today Technol. 1 (2004) 337–341 (http://dx.doi.org/10.1016/J.DDTEC.2004.11.007)
G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, Nucleic Acids Res. 49 (2021) W5–W14 (http://dx.doi.org/10.1093/nar/gkab255)
A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7 (2017) 1–13 (http://dx.doi.org/10.1038/srep42717)
A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39 (2011) W270 (http://dx.doi.org/10.1093/NAR/GKR366)
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. (2004) (http://dx.doi.org/10.1002/jcc.20084)
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 1–2 (2015) 19–25 (http://dx.doi.org/10.1016/J.SOFTX.2015.06.001)
M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100 (1996) 19357–19363 (http://dx.doi.org/10.1021/JP962071J;CTYPE:STRING:JOURNAL)
Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009. (https://gaussian.com/g09citation/)
Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh, PA. (https://gaussian.com/508_gvw/)
A. Meller, M. Ward, J. Borowsky, M. Kshirsagar, J. M. Lotthammer, F. Oviedo, J. L. Ferres, G. R. Bowman, Nat. Commun. 14 (2023) (http://dx.doi.org/10.1038/s41467-023-36699-3)
L. Jendele, R. Krivak, P. Skoda, M. Novotny, D. Hoksza, Nucleic Acids Res. 47 (2019) W345–W349 (http://dx.doi.org/10.1093/nar/gkz424)
V. Sharma, A. Gupta, M. Singh, A. Singh, A. A. Chaudhary, Z. H. Ahmed, S. U. D. Khan, S. Rustagi, S. Kumar, S. Kumar, Front. Bioinforma. 5 (2025) 1–13 (http://dx.doi.org/10.3389/fbinf.2025.1545353)
M. Popovic, Virology 570 (2022) 35–44 (http://dx.doi.org/10.1016/j.virol.2022.03.008)
M. Popovic, Microb. Risk Anal. 22 (2022) 100231 (http://dx.doi.org/10.1016/j.mran.2022.100231)
E. Wolf, C. Lento, J. Pu, B. C. Dickinson, D. J. Wilson, Biochemistry 62 (2023) 1619–1630 (http://dx.doi.org/10.1021/acs.biochem.2c00709)
J. Fanfrlík, A. K. Bronowska, J. Řezáč, O. Přenosil, J. Konvalinka, P. Hobza, J. Phys. Chem. B 114 (2010) 12666–12678 (http://dx.doi.org/10.1021/JP1032965)
J. Řezáč, J. Fanfrlík, D. Salahub, P. Hobza, J. Chem. Theory Comput. 5 (2009) 1749–1760 (https://doi.org/10.1021/ct9000922)
J. J. P. Stewart, J. Mol. Model. 13 (2007) 1173–1213 (http://dx.doi.org/10.1007/s00894-007-0233-4)
A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024–10035 (https://doi.org/10.1021/ja00051a040)
Z. Kazemi, H. A. Rudbari, M. Sahihi, V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, S. Gharaghani, J. Photochem. Photobiol. B Biol. 162 (2016) 448–462 (http://dx.doi.org/10.1016/J.JPHOTOBIOL.2016.07.003)
G. R. . Desiraju, T. Steiner, The weak hydrogen bond : in structural chemistry and biology, Oxford University Press, 2001
Biovia Dassault Systèmes, Discovery Studio Visualiser 2019, Dassault Systèmes, San Diego, 2020 (http://dx.doi.org/https://discover.3ds.com/discovery-studio-visualizer-download).